Metamath Proof Explorer
		
		
		
		Description:  Alternate definition of indexed intersection when B is a set.
       (Contributed by Mario Carneiro, 31-Aug-2015)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | dfiun3.1 | ⊢ 𝐵  ∈  V | 
				
					|  | Assertion | dfiin3 | ⊢  ∩  𝑥  ∈  𝐴 𝐵  =  ∩  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfiun3.1 | ⊢ 𝐵  ∈  V | 
						
							| 2 |  | dfiin3g | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  V  →  ∩  𝑥  ∈  𝐴 𝐵  =  ∩  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 3 | 1 | a1i | ⊢ ( 𝑥  ∈  𝐴  →  𝐵  ∈  V ) | 
						
							| 4 | 2 3 | mprg | ⊢ ∩  𝑥  ∈  𝐴 𝐵  =  ∩  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) |