Metamath Proof Explorer


Theorem dfima3

Description: Alternate definition of image. Compare definition (d) of Enderton p. 44. (Contributed by NM, 14-Aug-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion dfima3 ( 𝐴𝐵 ) = { 𝑦 ∣ ∃ 𝑥 ( 𝑥𝐵 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) }

Proof

Step Hyp Ref Expression
1 dfima2 ( 𝐴𝐵 ) = { 𝑦 ∣ ∃ 𝑥𝐵 𝑥 𝐴 𝑦 }
2 df-br ( 𝑥 𝐴 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 )
3 2 rexbii ( ∃ 𝑥𝐵 𝑥 𝐴 𝑦 ↔ ∃ 𝑥𝐵𝑥 , 𝑦 ⟩ ∈ 𝐴 )
4 df-rex ( ∃ 𝑥𝐵𝑥 , 𝑦 ⟩ ∈ 𝐴 ↔ ∃ 𝑥 ( 𝑥𝐵 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) )
5 3 4 bitri ( ∃ 𝑥𝐵 𝑥 𝐴 𝑦 ↔ ∃ 𝑥 ( 𝑥𝐵 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) )
6 5 abbii { 𝑦 ∣ ∃ 𝑥𝐵 𝑥 𝐴 𝑦 } = { 𝑦 ∣ ∃ 𝑥 ( 𝑥𝐵 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) }
7 1 6 eqtri ( 𝐴𝐵 ) = { 𝑦 ∣ ∃ 𝑥 ( 𝑥𝐵 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) }