Step |
Hyp |
Ref |
Expression |
1 |
|
dfimafnf.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
dfimafnf.2 |
⊢ Ⅎ 𝑥 𝐹 |
3 |
|
dfima2 |
⊢ ( 𝐹 “ 𝐴 ) = { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑧 𝐹 𝑦 } |
4 |
|
ssel |
⊢ ( 𝐴 ⊆ dom 𝐹 → ( 𝑧 ∈ 𝐴 → 𝑧 ∈ dom 𝐹 ) ) |
5 |
|
eqcom |
⊢ ( ( 𝐹 ‘ 𝑧 ) = 𝑦 ↔ 𝑦 = ( 𝐹 ‘ 𝑧 ) ) |
6 |
|
funbrfvb |
⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑧 ) = 𝑦 ↔ 𝑧 𝐹 𝑦 ) ) |
7 |
5 6
|
bitr3id |
⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ dom 𝐹 ) → ( 𝑦 = ( 𝐹 ‘ 𝑧 ) ↔ 𝑧 𝐹 𝑦 ) ) |
8 |
7
|
ex |
⊢ ( Fun 𝐹 → ( 𝑧 ∈ dom 𝐹 → ( 𝑦 = ( 𝐹 ‘ 𝑧 ) ↔ 𝑧 𝐹 𝑦 ) ) ) |
9 |
4 8
|
syl9r |
⊢ ( Fun 𝐹 → ( 𝐴 ⊆ dom 𝐹 → ( 𝑧 ∈ 𝐴 → ( 𝑦 = ( 𝐹 ‘ 𝑧 ) ↔ 𝑧 𝐹 𝑦 ) ) ) ) |
10 |
9
|
imp31 |
⊢ ( ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 = ( 𝐹 ‘ 𝑧 ) ↔ 𝑧 𝐹 𝑦 ) ) |
11 |
10
|
rexbidva |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( ∃ 𝑧 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑧 ) ↔ ∃ 𝑧 ∈ 𝐴 𝑧 𝐹 𝑦 ) ) |
12 |
11
|
abbidv |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑧 ) } = { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑧 𝐹 𝑦 } ) |
13 |
3 12
|
eqtr4id |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝐹 “ 𝐴 ) = { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑧 ) } ) |
14 |
|
nfcv |
⊢ Ⅎ 𝑧 𝐴 |
15 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
16 |
2 15
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑧 ) |
17 |
16
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑦 = ( 𝐹 ‘ 𝑧 ) |
18 |
|
nfv |
⊢ Ⅎ 𝑧 𝑦 = ( 𝐹 ‘ 𝑥 ) |
19 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑥 ) ) |
20 |
19
|
eqeq2d |
⊢ ( 𝑧 = 𝑥 → ( 𝑦 = ( 𝐹 ‘ 𝑧 ) ↔ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
21 |
14 1 17 18 20
|
cbvrexfw |
⊢ ( ∃ 𝑧 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑧 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
22 |
21
|
abbii |
⊢ { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑧 ) } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } |
23 |
13 22
|
eqtrdi |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝐹 “ 𝐴 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } ) |