Metamath Proof Explorer


Theorem dfin2

Description: An alternate definition of the intersection of two classes in terms of class difference, requiring no dummy variables. See comments under dfun2 . Another version is given by dfin4 . (Contributed by NM, 10-Jun-2004)

Ref Expression
Assertion dfin2 ( 𝐴𝐵 ) = ( 𝐴 ∖ ( V ∖ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 eldif ( 𝑥 ∈ ( V ∖ 𝐵 ) ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥𝐵 ) )
3 1 2 mpbiran ( 𝑥 ∈ ( V ∖ 𝐵 ) ↔ ¬ 𝑥𝐵 )
4 3 con2bii ( 𝑥𝐵 ↔ ¬ 𝑥 ∈ ( V ∖ 𝐵 ) )
5 4 anbi2i ( ( 𝑥𝐴𝑥𝐵 ) ↔ ( 𝑥𝐴 ∧ ¬ 𝑥 ∈ ( V ∖ 𝐵 ) ) )
6 eldif ( 𝑥 ∈ ( 𝐴 ∖ ( V ∖ 𝐵 ) ) ↔ ( 𝑥𝐴 ∧ ¬ 𝑥 ∈ ( V ∖ 𝐵 ) ) )
7 5 6 bitr4i ( ( 𝑥𝐴𝑥𝐵 ) ↔ 𝑥 ∈ ( 𝐴 ∖ ( V ∖ 𝐵 ) ) )
8 7 ineqri ( 𝐴𝐵 ) = ( 𝐴 ∖ ( V ∖ 𝐵 ) )