Description: An alternate definition of the intersection of two classes in terms of class difference, requiring no dummy variables. See comments under dfun2 . Another version is given by dfin4 . (Contributed by NM, 10-Jun-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfin2 | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐴 ∖ ( V ∖ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑥 ∈ V | |
| 2 | eldif | ⊢ ( 𝑥 ∈ ( V ∖ 𝐵 ) ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ 𝐵 ) ) | |
| 3 | 1 2 | mpbiran | ⊢ ( 𝑥 ∈ ( V ∖ 𝐵 ) ↔ ¬ 𝑥 ∈ 𝐵 ) |
| 4 | 3 | con2bii | ⊢ ( 𝑥 ∈ 𝐵 ↔ ¬ 𝑥 ∈ ( V ∖ 𝐵 ) ) |
| 5 | 4 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ( V ∖ 𝐵 ) ) ) |
| 6 | eldif | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ ( V ∖ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ( V ∖ 𝐵 ) ) ) | |
| 7 | 5 6 | bitr4i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ ( 𝐴 ∖ ( V ∖ 𝐵 ) ) ) |
| 8 | 7 | ineqri | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐴 ∖ ( V ∖ 𝐵 ) ) |