Step |
Hyp |
Ref |
Expression |
1 |
|
ddif |
⊢ ( V ∖ ( V ∖ ( 𝐴 ∖ ( V ∖ 𝐵 ) ) ) ) = ( 𝐴 ∖ ( V ∖ 𝐵 ) ) |
2 |
|
dfun2 |
⊢ ( ( V ∖ 𝐴 ) ∪ ( V ∖ 𝐵 ) ) = ( V ∖ ( ( V ∖ ( V ∖ 𝐴 ) ) ∖ ( V ∖ 𝐵 ) ) ) |
3 |
|
ddif |
⊢ ( V ∖ ( V ∖ 𝐴 ) ) = 𝐴 |
4 |
3
|
difeq1i |
⊢ ( ( V ∖ ( V ∖ 𝐴 ) ) ∖ ( V ∖ 𝐵 ) ) = ( 𝐴 ∖ ( V ∖ 𝐵 ) ) |
5 |
4
|
difeq2i |
⊢ ( V ∖ ( ( V ∖ ( V ∖ 𝐴 ) ) ∖ ( V ∖ 𝐵 ) ) ) = ( V ∖ ( 𝐴 ∖ ( V ∖ 𝐵 ) ) ) |
6 |
2 5
|
eqtri |
⊢ ( ( V ∖ 𝐴 ) ∪ ( V ∖ 𝐵 ) ) = ( V ∖ ( 𝐴 ∖ ( V ∖ 𝐵 ) ) ) |
7 |
6
|
difeq2i |
⊢ ( V ∖ ( ( V ∖ 𝐴 ) ∪ ( V ∖ 𝐵 ) ) ) = ( V ∖ ( V ∖ ( 𝐴 ∖ ( V ∖ 𝐵 ) ) ) ) |
8 |
|
dfin2 |
⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐴 ∖ ( V ∖ 𝐵 ) ) |
9 |
1 7 8
|
3eqtr4ri |
⊢ ( 𝐴 ∩ 𝐵 ) = ( V ∖ ( ( V ∖ 𝐴 ) ∪ ( V ∖ 𝐵 ) ) ) |