Description: Alternate definition of the intersection of two classes. Exercise 4.10(q) of Mendelson p. 231. (Contributed by NM, 25-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfin4 | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐴 ∖ ( 𝐴 ∖ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 2 | dfss4 | ⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ↔ ( 𝐴 ∖ ( 𝐴 ∖ ( 𝐴 ∩ 𝐵 ) ) ) = ( 𝐴 ∩ 𝐵 ) ) | |
| 3 | 1 2 | mpbi | ⊢ ( 𝐴 ∖ ( 𝐴 ∖ ( 𝐴 ∩ 𝐵 ) ) ) = ( 𝐴 ∩ 𝐵 ) |
| 4 | difin | ⊢ ( 𝐴 ∖ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) | |
| 5 | 4 | difeq2i | ⊢ ( 𝐴 ∖ ( 𝐴 ∖ ( 𝐴 ∩ 𝐵 ) ) ) = ( 𝐴 ∖ ( 𝐴 ∖ 𝐵 ) ) |
| 6 | 3 5 | eqtr3i | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐴 ∖ ( 𝐴 ∖ 𝐵 ) ) |