Metamath Proof Explorer


Theorem dfin4

Description: Alternate definition of the intersection of two classes. Exercise 4.10(q) of Mendelson p. 231. (Contributed by NM, 25-Nov-2003)

Ref Expression
Assertion dfin4 ( 𝐴𝐵 ) = ( 𝐴 ∖ ( 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 inss1 ( 𝐴𝐵 ) ⊆ 𝐴
2 dfss4 ( ( 𝐴𝐵 ) ⊆ 𝐴 ↔ ( 𝐴 ∖ ( 𝐴 ∖ ( 𝐴𝐵 ) ) ) = ( 𝐴𝐵 ) )
3 1 2 mpbi ( 𝐴 ∖ ( 𝐴 ∖ ( 𝐴𝐵 ) ) ) = ( 𝐴𝐵 )
4 difin ( 𝐴 ∖ ( 𝐴𝐵 ) ) = ( 𝐴𝐵 )
5 4 difeq2i ( 𝐴 ∖ ( 𝐴 ∖ ( 𝐴𝐵 ) ) ) = ( 𝐴 ∖ ( 𝐴𝐵 ) )
6 3 5 eqtr3i ( 𝐴𝐵 ) = ( 𝐴 ∖ ( 𝐴𝐵 ) )