Metamath Proof Explorer


Theorem dfin5

Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005)

Ref Expression
Assertion dfin5 ( 𝐴𝐵 ) = { 𝑥𝐴𝑥𝐵 }

Proof

Step Hyp Ref Expression
1 df-in ( 𝐴𝐵 ) = { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) }
2 df-rab { 𝑥𝐴𝑥𝐵 } = { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) }
3 1 2 eqtr4i ( 𝐴𝐵 ) = { 𝑥𝐴𝑥𝐵 }