Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | dfin5 | ⊢ ( 𝐴 ∩ 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-in | ⊢ ( 𝐴 ∩ 𝐵 ) = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) } | |
2 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) } | |
3 | 1 2 | eqtr4i | ⊢ ( 𝐴 ∩ 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵 } |