Step |
Hyp |
Ref |
Expression |
1 |
|
df-inf |
⊢ inf ( 𝐴 , ℝ , < ) = sup ( 𝐴 , ℝ , ◡ < ) |
2 |
|
df-sup |
⊢ sup ( 𝐴 , ℝ , ◡ < ) = ∪ { 𝑥 ∈ ℝ ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ◡ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 ◡ < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ) ) } |
3 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) |
4 |
|
vex |
⊢ 𝑥 ∈ V |
5 |
|
vex |
⊢ 𝑦 ∈ V |
6 |
4 5
|
brcnv |
⊢ ( 𝑥 ◡ < 𝑦 ↔ 𝑦 < 𝑥 ) |
7 |
6
|
notbii |
⊢ ( ¬ 𝑥 ◡ < 𝑦 ↔ ¬ 𝑦 < 𝑥 ) |
8 |
|
lenlt |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑥 ) ) |
9 |
7 8
|
bitr4id |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ¬ 𝑥 ◡ < 𝑦 ↔ 𝑥 ≤ 𝑦 ) ) |
10 |
3 9
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) ) → ( ¬ 𝑥 ◡ < 𝑦 ↔ 𝑥 ≤ 𝑦 ) ) |
11 |
10
|
ancoms |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ¬ 𝑥 ◡ < 𝑦 ↔ 𝑥 ≤ 𝑦 ) ) |
12 |
11
|
an32s |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ¬ 𝑥 ◡ < 𝑦 ↔ 𝑥 ≤ 𝑦 ) ) |
13 |
12
|
ralbidva |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ◡ < 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
14 |
5 4
|
brcnv |
⊢ ( 𝑦 ◡ < 𝑥 ↔ 𝑥 < 𝑦 ) |
15 |
|
vex |
⊢ 𝑧 ∈ V |
16 |
5 15
|
brcnv |
⊢ ( 𝑦 ◡ < 𝑧 ↔ 𝑧 < 𝑦 ) |
17 |
16
|
rexbii |
⊢ ( ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) |
18 |
14 17
|
imbi12i |
⊢ ( ( 𝑦 ◡ < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ) ↔ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) |
19 |
18
|
ralbii |
⊢ ( ∀ 𝑦 ∈ ℝ ( 𝑦 ◡ < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ) ↔ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) |
20 |
19
|
a1i |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑦 ∈ ℝ ( 𝑦 ◡ < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ) ↔ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
21 |
13 20
|
anbi12d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ◡ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 ◡ < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
22 |
21
|
rabbidva |
⊢ ( 𝐴 ⊆ ℝ → { 𝑥 ∈ ℝ ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ◡ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 ◡ < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ) ) } = { 𝑥 ∈ ℝ ∣ ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) } ) |
23 |
22
|
unieqd |
⊢ ( 𝐴 ⊆ ℝ → ∪ { 𝑥 ∈ ℝ ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ◡ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 ◡ < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ) ) } = ∪ { 𝑥 ∈ ℝ ∣ ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) } ) |
24 |
2 23
|
eqtrid |
⊢ ( 𝐴 ⊆ ℝ → sup ( 𝐴 , ℝ , ◡ < ) = ∪ { 𝑥 ∈ ℝ ∣ ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) } ) |
25 |
1 24
|
eqtrid |
⊢ ( 𝐴 ⊆ ℝ → inf ( 𝐴 , ℝ , < ) = ∪ { 𝑥 ∈ ℝ ∣ ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) } ) |