Metamath Proof Explorer


Theorem dfint2

Description: Alternate definition of class intersection. (Contributed by NM, 28-Jun-1998)

Ref Expression
Assertion dfint2 𝐴 = { 𝑥 ∣ ∀ 𝑦𝐴 𝑥𝑦 }

Proof

Step Hyp Ref Expression
1 df-int 𝐴 = { 𝑥 ∣ ∀ 𝑦 ( 𝑦𝐴𝑥𝑦 ) }
2 df-ral ( ∀ 𝑦𝐴 𝑥𝑦 ↔ ∀ 𝑦 ( 𝑦𝐴𝑥𝑦 ) )
3 2 abbii { 𝑥 ∣ ∀ 𝑦𝐴 𝑥𝑦 } = { 𝑥 ∣ ∀ 𝑦 ( 𝑦𝐴𝑥𝑦 ) }
4 1 3 eqtr4i 𝐴 = { 𝑥 ∣ ∀ 𝑦𝐴 𝑥𝑦 }