Step |
Hyp |
Ref |
Expression |
1 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
2 |
|
ffn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) |
3 |
1 2
|
ax-mp |
⊢ (,) Fn ( ℝ* × ℝ* ) |
4 |
|
fnov |
⊢ ( (,) Fn ( ℝ* × ℝ* ) ↔ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ ( 𝑥 (,) 𝑦 ) ) ) |
5 |
3 4
|
mpbi |
⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ ( 𝑥 (,) 𝑦 ) ) |
6 |
|
iooval2 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 (,) 𝑦 ) = { 𝑤 ∈ ℝ ∣ ( 𝑥 < 𝑤 ∧ 𝑤 < 𝑦 ) } ) |
7 |
6
|
mpoeq3ia |
⊢ ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ ( 𝑥 (,) 𝑦 ) ) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑤 ∈ ℝ ∣ ( 𝑥 < 𝑤 ∧ 𝑤 < 𝑦 ) } ) |
8 |
5 7
|
eqtri |
⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑤 ∈ ℝ ∣ ( 𝑥 < 𝑤 ∧ 𝑤 < 𝑦 ) } ) |