Metamath Proof Explorer


Theorem dfioo2

Description: Alternate definition of the set of open intervals of extended reals. (Contributed by NM, 1-Mar-2007) (Revised by Mario Carneiro, 1-Sep-2015)

Ref Expression
Assertion dfioo2 (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑤 ∈ ℝ ∣ ( 𝑥 < 𝑤𝑤 < 𝑦 ) } )

Proof

Step Hyp Ref Expression
1 ioof (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ
2 ffn ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) )
3 1 2 ax-mp (,) Fn ( ℝ* × ℝ* )
4 fnov ( (,) Fn ( ℝ* × ℝ* ) ↔ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ ( 𝑥 (,) 𝑦 ) ) )
5 3 4 mpbi (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ ( 𝑥 (,) 𝑦 ) )
6 iooval2 ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) → ( 𝑥 (,) 𝑦 ) = { 𝑤 ∈ ℝ ∣ ( 𝑥 < 𝑤𝑤 < 𝑦 ) } )
7 6 mpoeq3ia ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ ( 𝑥 (,) 𝑦 ) ) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑤 ∈ ℝ ∣ ( 𝑥 < 𝑤𝑤 < 𝑦 ) } )
8 5 7 eqtri (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑤 ∈ ℝ ∣ ( 𝑥 < 𝑤𝑤 < 𝑦 ) } )