| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-iop | ⊢  Iop   =  ( projℎ ‘  ℋ ) | 
						
							| 2 |  | helch | ⊢  ℋ  ∈   Cℋ | 
						
							| 3 | 2 | pjfni | ⊢ ( projℎ ‘  ℋ )  Fn   ℋ | 
						
							| 4 |  | fnresi | ⊢ (  I   ↾   ℋ )  Fn   ℋ | 
						
							| 5 |  | pjch1 | ⊢ ( 𝑥  ∈   ℋ  →  ( ( projℎ ‘  ℋ ) ‘ 𝑥 )  =  𝑥 ) | 
						
							| 6 |  | fvresi | ⊢ ( 𝑥  ∈   ℋ  →  ( (  I   ↾   ℋ ) ‘ 𝑥 )  =  𝑥 ) | 
						
							| 7 | 5 6 | eqtr4d | ⊢ ( 𝑥  ∈   ℋ  →  ( ( projℎ ‘  ℋ ) ‘ 𝑥 )  =  ( (  I   ↾   ℋ ) ‘ 𝑥 ) ) | 
						
							| 8 | 7 | rgen | ⊢ ∀ 𝑥  ∈   ℋ ( ( projℎ ‘  ℋ ) ‘ 𝑥 )  =  ( (  I   ↾   ℋ ) ‘ 𝑥 ) | 
						
							| 9 |  | eqfnfv | ⊢ ( ( ( projℎ ‘  ℋ )  Fn   ℋ  ∧  (  I   ↾   ℋ )  Fn   ℋ )  →  ( ( projℎ ‘  ℋ )  =  (  I   ↾   ℋ )  ↔  ∀ 𝑥  ∈   ℋ ( ( projℎ ‘  ℋ ) ‘ 𝑥 )  =  ( (  I   ↾   ℋ ) ‘ 𝑥 ) ) ) | 
						
							| 10 | 8 9 | mpbiri | ⊢ ( ( ( projℎ ‘  ℋ )  Fn   ℋ  ∧  (  I   ↾   ℋ )  Fn   ℋ )  →  ( projℎ ‘  ℋ )  =  (  I   ↾   ℋ ) ) | 
						
							| 11 | 3 4 10 | mp2an | ⊢ ( projℎ ‘  ℋ )  =  (  I   ↾   ℋ ) | 
						
							| 12 | 1 11 | eqtri | ⊢  Iop   =  (  I   ↾   ℋ ) |