Metamath Proof Explorer


Theorem dfiop2

Description: Alternate definition of Hilbert space identity operator. (Contributed by NM, 7-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion dfiop2 Iop = ( I ↾ ℋ )

Proof

Step Hyp Ref Expression
1 df-iop Iop = ( proj ‘ ℋ )
2 helch ℋ ∈ C
3 2 pjfni ( proj ‘ ℋ ) Fn ℋ
4 fnresi ( I ↾ ℋ ) Fn ℋ
5 pjch1 ( 𝑥 ∈ ℋ → ( ( proj ‘ ℋ ) ‘ 𝑥 ) = 𝑥 )
6 fvresi ( 𝑥 ∈ ℋ → ( ( I ↾ ℋ ) ‘ 𝑥 ) = 𝑥 )
7 5 6 eqtr4d ( 𝑥 ∈ ℋ → ( ( proj ‘ ℋ ) ‘ 𝑥 ) = ( ( I ↾ ℋ ) ‘ 𝑥 ) )
8 7 rgen 𝑥 ∈ ℋ ( ( proj ‘ ℋ ) ‘ 𝑥 ) = ( ( I ↾ ℋ ) ‘ 𝑥 )
9 eqfnfv ( ( ( proj ‘ ℋ ) Fn ℋ ∧ ( I ↾ ℋ ) Fn ℋ ) → ( ( proj ‘ ℋ ) = ( I ↾ ℋ ) ↔ ∀ 𝑥 ∈ ℋ ( ( proj ‘ ℋ ) ‘ 𝑥 ) = ( ( I ↾ ℋ ) ‘ 𝑥 ) ) )
10 8 9 mpbiri ( ( ( proj ‘ ℋ ) Fn ℋ ∧ ( I ↾ ℋ ) Fn ℋ ) → ( proj ‘ ℋ ) = ( I ↾ ℋ ) )
11 3 4 10 mp2an ( proj ‘ ℋ ) = ( I ↾ ℋ )
12 1 11 eqtri Iop = ( I ↾ ℋ )