Metamath Proof Explorer


Theorem dfiota2

Description: Alternate definition for descriptions. Definition 8.18 in Quine p. 56. (Contributed by Andrew Salmon, 30-Jun-2011)

Ref Expression
Assertion dfiota2 ( ℩ 𝑥 𝜑 ) = { 𝑦 ∣ ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) }

Proof

Step Hyp Ref Expression
1 df-iota ( ℩ 𝑥 𝜑 ) = { 𝑦 ∣ { 𝑥𝜑 } = { 𝑦 } }
2 absn ( { 𝑥𝜑 } = { 𝑦 } ↔ ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) )
3 2 abbii { 𝑦 ∣ { 𝑥𝜑 } = { 𝑦 } } = { 𝑦 ∣ ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) }
4 3 unieqi { 𝑦 ∣ { 𝑥𝜑 } = { 𝑦 } } = { 𝑦 ∣ ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) }
5 1 4 eqtri ( ℩ 𝑥 𝜑 ) = { 𝑦 ∣ ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) }