Metamath Proof Explorer


Theorem dfiota4

Description: The iota operation using the if operator. (Contributed by Scott Fenton, 6-Oct-2017) (Proof shortened by JJ, 28-Oct-2021)

Ref Expression
Assertion dfiota4 ( ℩ 𝑥 𝜑 ) = if ( ∃! 𝑥 𝜑 , { 𝑥𝜑 } , ∅ )

Proof

Step Hyp Ref Expression
1 iotauni ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) = { 𝑥𝜑 } )
2 iotanul ( ¬ ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) = ∅ )
3 ifval ( ( ℩ 𝑥 𝜑 ) = if ( ∃! 𝑥 𝜑 , { 𝑥𝜑 } , ∅ ) ↔ ( ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) = { 𝑥𝜑 } ) ∧ ( ¬ ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) = ∅ ) ) )
4 1 2 3 mpbir2an ( ℩ 𝑥 𝜑 ) = if ( ∃! 𝑥 𝜑 , { 𝑥𝜑 } , ∅ )