Step |
Hyp |
Ref |
Expression |
1 |
|
dfiso2.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
dfiso2.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
dfiso2.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
dfiso2.i |
⊢ 𝐼 = ( Iso ‘ 𝐶 ) |
5 |
|
dfiso2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
dfiso2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
dfiso2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
8 |
|
dfiso2.1 |
⊢ 1 = ( Id ‘ 𝐶 ) |
9 |
|
dfiso2.o |
⊢ ⚬ = ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) |
10 |
|
dfiso2.p |
⊢ ∗ = ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) |
11 |
|
eqid |
⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) |
12 |
1 11 3 5 6 4
|
isoval |
⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) |
13 |
12
|
eleq2d |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) ) |
14 |
|
eqid |
⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) |
15 |
1 11 3 5 6 14
|
invfval |
⊢ ( 𝜑 → ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) = ( ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) ) |
16 |
15
|
dmeqd |
⊢ ( 𝜑 → dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) = dom ( ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) ) |
17 |
16
|
eleq2d |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ↔ 𝐹 ∈ dom ( ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) ) ) |
18 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
19 |
1 2 18 8 14 3 5 6
|
sectfval |
⊢ ( 𝜑 → ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } ) |
20 |
1 2 18 8 14 3 6 5
|
sectfval |
⊢ ( 𝜑 → ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) = { 〈 𝑔 , 𝑓 〉 ∣ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) } ) |
21 |
20
|
cnveqd |
⊢ ( 𝜑 → ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) = ◡ { 〈 𝑔 , 𝑓 〉 ∣ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) } ) |
22 |
|
cnvopab |
⊢ ◡ { 〈 𝑔 , 𝑓 〉 ∣ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) } |
23 |
21 22
|
eqtrdi |
⊢ ( 𝜑 → ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) } ) |
24 |
19 23
|
ineq12d |
⊢ ( 𝜑 → ( ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) = ( { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } ∩ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) } ) ) |
25 |
|
inopab |
⊢ ( { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } ∩ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) } ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) ∧ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) } |
26 |
|
an4 |
⊢ ( ( ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) ∧ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ↔ ( ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) |
27 |
|
an42 |
⊢ ( ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) ↔ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ) ) |
28 |
|
anidm |
⊢ ( ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ) ↔ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ) |
29 |
27 28
|
bitri |
⊢ ( ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) ↔ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ) |
30 |
29
|
anbi1i |
⊢ ( ( ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ↔ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) |
31 |
26 30
|
bitri |
⊢ ( ( ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) ∧ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ↔ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) |
32 |
31
|
opabbii |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) ∧ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) } |
33 |
25 32
|
eqtri |
⊢ ( { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } ∩ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) } ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) } |
34 |
24 33
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) } ) |
35 |
34
|
dmeqd |
⊢ ( 𝜑 → dom ( ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) = dom { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) } ) |
36 |
|
dmopab |
⊢ dom { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) } = { 𝑓 ∣ ∃ 𝑔 ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) } |
37 |
35 36
|
eqtrdi |
⊢ ( 𝜑 → dom ( ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) = { 𝑓 ∣ ∃ 𝑔 ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) } ) |
38 |
37
|
eleq2d |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ( ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) ↔ 𝐹 ∈ { 𝑓 ∣ ∃ 𝑔 ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) } ) ) |
39 |
|
eleq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↔ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
40 |
39
|
anbi1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ) ) |
41 |
|
oveq2 |
⊢ ( 𝑓 = 𝐹 → ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) |
42 |
41
|
eqeq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ↔ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) |
43 |
|
oveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) ) |
44 |
43
|
eqeq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ↔ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) |
45 |
42 44
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ↔ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) |
46 |
40 45
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) ) |
47 |
46
|
exbidv |
⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑔 ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ↔ ∃ 𝑔 ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) ) |
48 |
47
|
elabg |
⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ( 𝐹 ∈ { 𝑓 ∣ ∃ 𝑔 ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) } ↔ ∃ 𝑔 ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) ) |
49 |
7 48
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∈ { 𝑓 ∣ ∃ 𝑔 ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) } ↔ ∃ 𝑔 ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) ) |
50 |
7
|
biantrurd |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ) ) |
51 |
50
|
bicomd |
⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ↔ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ) |
52 |
9
|
a1i |
⊢ ( 𝜑 → ⚬ = ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) ) |
53 |
52
|
eqcomd |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) = ⚬ ) |
54 |
53
|
oveqd |
⊢ ( 𝜑 → ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 𝑔 ⚬ 𝐹 ) ) |
55 |
54
|
eqeq1d |
⊢ ( 𝜑 → ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ↔ ( 𝑔 ⚬ 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) |
56 |
10
|
a1i |
⊢ ( 𝜑 → ∗ = ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ) |
57 |
56
|
eqcomd |
⊢ ( 𝜑 → ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) = ∗ ) |
58 |
57
|
oveqd |
⊢ ( 𝜑 → ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ∗ 𝑔 ) ) |
59 |
58
|
eqeq1d |
⊢ ( 𝜑 → ( ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ↔ ( 𝐹 ∗ 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) |
60 |
55 59
|
anbi12d |
⊢ ( 𝜑 → ( ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ↔ ( ( 𝑔 ⚬ 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ∗ 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) |
61 |
51 60
|
anbi12d |
⊢ ( 𝜑 → ( ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ↔ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( ( 𝑔 ⚬ 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ∗ 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) ) |
62 |
61
|
exbidv |
⊢ ( 𝜑 → ( ∃ 𝑔 ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ↔ ∃ 𝑔 ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( ( 𝑔 ⚬ 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ∗ 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) ) |
63 |
|
df-rex |
⊢ ( ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( ( 𝑔 ⚬ 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ∗ 𝑔 ) = ( 1 ‘ 𝑌 ) ) ↔ ∃ 𝑔 ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( ( 𝑔 ⚬ 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ∗ 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) |
64 |
62 63
|
bitr4di |
⊢ ( 𝜑 → ( ∃ 𝑔 ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ↔ ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( ( 𝑔 ⚬ 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ∗ 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) |
65 |
38 49 64
|
3bitrd |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ( ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) ↔ ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( ( 𝑔 ⚬ 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ∗ 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) |
66 |
13 17 65
|
3bitrd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( ( 𝑔 ⚬ 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ∗ 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) |