| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfiso3.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 2 |  | dfiso3.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 3 |  | dfiso3.i | ⊢ 𝐼  =  ( Iso ‘ 𝐶 ) | 
						
							| 4 |  | dfiso3.s | ⊢ 𝑆  =  ( Sect ‘ 𝐶 ) | 
						
							| 5 |  | dfiso3.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 6 |  | dfiso3.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 7 |  | dfiso3.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 8 |  | dfiso3.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 9 |  | eqid | ⊢ ( Id ‘ 𝐶 )  =  ( Id ‘ 𝐶 ) | 
						
							| 10 |  | eqid | ⊢ ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 )  =  ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) | 
						
							| 11 |  | eqid | ⊢ ( 〈 𝑌 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 )  =  ( 〈 𝑌 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) | 
						
							| 12 | 1 2 5 3 6 7 8 9 10 11 | dfiso2 | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( 𝑋 𝐼 𝑌 )  ↔  ∃ 𝑔  ∈  ( 𝑌 𝐻 𝑋 ) ( ( 𝑔 ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝑋 )  ∧  ( 𝐹 ( 〈 𝑌 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( comp ‘ 𝐶 )  =  ( comp ‘ 𝐶 ) | 
						
							| 14 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝑌 𝐻 𝑋 ) )  →  𝐶  ∈  Cat ) | 
						
							| 15 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝑌 𝐻 𝑋 ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 16 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝑌 𝐻 𝑋 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝑌 𝐻 𝑋 ) )  →  𝑔  ∈  ( 𝑌 𝐻 𝑋 ) ) | 
						
							| 18 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝑌 𝐻 𝑋 ) )  →  𝐹  ∈  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 19 | 1 2 13 9 4 14 15 16 17 18 | issect2 | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝑌 𝐻 𝑋 ) )  →  ( 𝑔 ( 𝑌 𝑆 𝑋 ) 𝐹  ↔  ( 𝐹 ( 〈 𝑌 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) | 
						
							| 20 | 1 2 13 9 4 14 16 15 18 17 | issect2 | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝑌 𝐻 𝑋 ) )  →  ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝑔  ↔  ( 𝑔 ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) | 
						
							| 21 | 19 20 | anbi12d | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝑌 𝐻 𝑋 ) )  →  ( ( 𝑔 ( 𝑌 𝑆 𝑋 ) 𝐹  ∧  𝐹 ( 𝑋 𝑆 𝑌 ) 𝑔 )  ↔  ( ( 𝐹 ( 〈 𝑌 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝑌 )  ∧  ( 𝑔 ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) | 
						
							| 22 |  | ancom | ⊢ ( ( ( 𝐹 ( 〈 𝑌 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝑌 )  ∧  ( 𝑔 ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) )  ↔  ( ( 𝑔 ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝑋 )  ∧  ( 𝐹 ( 〈 𝑌 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) | 
						
							| 23 | 21 22 | bitr2di | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝑌 𝐻 𝑋 ) )  →  ( ( ( 𝑔 ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝑋 )  ∧  ( 𝐹 ( 〈 𝑌 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) )  ↔  ( 𝑔 ( 𝑌 𝑆 𝑋 ) 𝐹  ∧  𝐹 ( 𝑋 𝑆 𝑌 ) 𝑔 ) ) ) | 
						
							| 24 | 23 | rexbidva | ⊢ ( 𝜑  →  ( ∃ 𝑔  ∈  ( 𝑌 𝐻 𝑋 ) ( ( 𝑔 ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝑋 )  ∧  ( 𝐹 ( 〈 𝑌 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) )  ↔  ∃ 𝑔  ∈  ( 𝑌 𝐻 𝑋 ) ( 𝑔 ( 𝑌 𝑆 𝑋 ) 𝐹  ∧  𝐹 ( 𝑋 𝑆 𝑌 ) 𝑔 ) ) ) | 
						
							| 25 | 12 24 | bitrd | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( 𝑋 𝐼 𝑌 )  ↔  ∃ 𝑔  ∈  ( 𝑌 𝐻 𝑋 ) ( 𝑔 ( 𝑌 𝑆 𝑋 ) 𝐹  ∧  𝐹 ( 𝑋 𝑆 𝑌 ) 𝑔 ) ) ) |