Step |
Hyp |
Ref |
Expression |
1 |
|
dfiso3.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
dfiso3.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
dfiso3.i |
⊢ 𝐼 = ( Iso ‘ 𝐶 ) |
4 |
|
dfiso3.s |
⊢ 𝑆 = ( Sect ‘ 𝐶 ) |
5 |
|
dfiso3.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
6 |
|
dfiso3.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
dfiso3.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
8 |
|
dfiso3.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
9 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
10 |
|
eqid |
⊢ ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) = ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) |
11 |
|
eqid |
⊢ ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) = ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) |
12 |
1 2 5 3 6 7 8 9 10 11
|
dfiso2 |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) ) |
13 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
14 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝐶 ∈ Cat ) |
15 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝑌 ∈ 𝐵 ) |
16 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝑋 ∈ 𝐵 ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) |
18 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
19 |
1 2 13 9 4 14 15 16 17 18
|
issect2 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) → ( 𝑔 ( 𝑌 𝑆 𝑋 ) 𝐹 ↔ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) |
20 |
1 2 13 9 4 14 16 15 18 17
|
issect2 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝑔 ↔ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
21 |
19 20
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) → ( ( 𝑔 ( 𝑌 𝑆 𝑋 ) 𝐹 ∧ 𝐹 ( 𝑋 𝑆 𝑌 ) 𝑔 ) ↔ ( ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) |
22 |
|
ancom |
⊢ ( ( ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) |
23 |
21 22
|
bitr2di |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) → ( ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ↔ ( 𝑔 ( 𝑌 𝑆 𝑋 ) 𝐹 ∧ 𝐹 ( 𝑋 𝑆 𝑌 ) 𝑔 ) ) ) |
24 |
23
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ↔ ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( 𝑔 ( 𝑌 𝑆 𝑋 ) 𝐹 ∧ 𝐹 ( 𝑋 𝑆 𝑌 ) 𝑔 ) ) ) |
25 |
12 24
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( 𝑔 ( 𝑌 𝑆 𝑋 ) 𝐹 ∧ 𝐹 ( 𝑋 𝑆 𝑌 ) 𝑔 ) ) ) |