| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfitg.1 | ⊢ 𝑇  =  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) | 
						
							| 2 |  | df-itg | ⊢ ∫ 𝐴 𝐵  d 𝑥  =  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) ) ) | 
						
							| 3 |  | fvex | ⊢ ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  ∈  V | 
						
							| 4 |  | id | ⊢ ( 𝑦  =  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  →  𝑦  =  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) | 
						
							| 5 | 4 1 | eqtr4di | ⊢ ( 𝑦  =  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  →  𝑦  =  𝑇 ) | 
						
							| 6 | 5 | breq2d | ⊢ ( 𝑦  =  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  →  ( 0  ≤  𝑦  ↔  0  ≤  𝑇 ) ) | 
						
							| 7 | 6 | anbi2d | ⊢ ( 𝑦  =  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  →  ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 )  ↔  ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑇 ) ) ) | 
						
							| 8 | 7 5 | ifbieq1d | ⊢ ( 𝑦  =  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 )  =  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑇 ) ,  𝑇 ,  0 ) ) | 
						
							| 9 | 3 8 | csbie | ⊢ ⦋ ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 )  =  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑇 ) ,  𝑇 ,  0 ) | 
						
							| 10 | 9 | mpteq2i | ⊢ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑇 ) ,  𝑇 ,  0 ) ) | 
						
							| 11 | 10 | fveq2i | ⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑇 ) ,  𝑇 ,  0 ) ) ) | 
						
							| 12 | 11 | oveq2i | ⊢ ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) ) )  =  ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑇 ) ,  𝑇 ,  0 ) ) ) ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) ) )  =  ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑇 ) ,  𝑇 ,  0 ) ) ) ) ) | 
						
							| 14 | 13 | sumeq2i | ⊢ Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) ) )  =  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑇 ) ,  𝑇 ,  0 ) ) ) ) | 
						
							| 15 | 2 14 | eqtri | ⊢ ∫ 𝐴 𝐵  d 𝑥  =  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑇 ) ,  𝑇 ,  0 ) ) ) ) |