| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 |
| 2 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐶 ) |
| 3 |
|
clel3g |
⊢ ( 𝐵 ∈ 𝐶 → ( 𝑧 ∈ 𝐵 ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦 ) ) ) |
| 4 |
2 3
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑧 ∈ 𝐵 ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦 ) ) ) |
| 5 |
1 4
|
rexbida |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦 ) ) ) |
| 6 |
|
rexcom4 |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦 ) ↔ ∃ 𝑦 ∃ 𝑥 ∈ 𝐴 ( 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦 ) ) |
| 7 |
5 6
|
bitrdi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃ 𝑦 ∃ 𝑥 ∈ 𝐴 ( 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦 ) ) ) |
| 8 |
|
r19.41v |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦 ) ) |
| 9 |
8
|
exbii |
⊢ ( ∃ 𝑦 ∃ 𝑥 ∈ 𝐴 ( 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦 ) ↔ ∃ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦 ) ) |
| 10 |
|
exancom |
⊢ ( ∃ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦 ) ↔ ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ) ) |
| 11 |
9 10
|
bitri |
⊢ ( ∃ 𝑦 ∃ 𝑥 ∈ 𝐴 ( 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦 ) ↔ ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ) ) |
| 12 |
7 11
|
bitrdi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ) ) ) |
| 13 |
|
eliun |
⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) |
| 14 |
|
eluniab |
⊢ ( 𝑧 ∈ ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ↔ ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ) ) |
| 15 |
12 13 14
|
3bitr4g |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑧 ∈ ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) ) |
| 16 |
15
|
eqrdv |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) |