Metamath Proof Explorer


Theorem dfiun2gOLD

Description: Obsolete proof of dfiun2g as of 11-Aug-2023. (Contributed by NM, 23-Mar-2006) (Proof shortened by Andrew Salmon, 25-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dfiun2gOLD ( ∀ 𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } )

Proof

Step Hyp Ref Expression
1 nfra1 𝑥𝑥𝐴 𝐵𝐶
2 rsp ( ∀ 𝑥𝐴 𝐵𝐶 → ( 𝑥𝐴𝐵𝐶 ) )
3 clel3g ( 𝐵𝐶 → ( 𝑧𝐵 ↔ ∃ 𝑦 ( 𝑦 = 𝐵𝑧𝑦 ) ) )
4 2 3 syl6 ( ∀ 𝑥𝐴 𝐵𝐶 → ( 𝑥𝐴 → ( 𝑧𝐵 ↔ ∃ 𝑦 ( 𝑦 = 𝐵𝑧𝑦 ) ) ) )
5 4 imp ( ( ∀ 𝑥𝐴 𝐵𝐶𝑥𝐴 ) → ( 𝑧𝐵 ↔ ∃ 𝑦 ( 𝑦 = 𝐵𝑧𝑦 ) ) )
6 1 5 rexbida ( ∀ 𝑥𝐴 𝐵𝐶 → ( ∃ 𝑥𝐴 𝑧𝐵 ↔ ∃ 𝑥𝐴𝑦 ( 𝑦 = 𝐵𝑧𝑦 ) ) )
7 rexcom4 ( ∃ 𝑥𝐴𝑦 ( 𝑦 = 𝐵𝑧𝑦 ) ↔ ∃ 𝑦𝑥𝐴 ( 𝑦 = 𝐵𝑧𝑦 ) )
8 6 7 bitrdi ( ∀ 𝑥𝐴 𝐵𝐶 → ( ∃ 𝑥𝐴 𝑧𝐵 ↔ ∃ 𝑦𝑥𝐴 ( 𝑦 = 𝐵𝑧𝑦 ) ) )
9 r19.41v ( ∃ 𝑥𝐴 ( 𝑦 = 𝐵𝑧𝑦 ) ↔ ( ∃ 𝑥𝐴 𝑦 = 𝐵𝑧𝑦 ) )
10 9 exbii ( ∃ 𝑦𝑥𝐴 ( 𝑦 = 𝐵𝑧𝑦 ) ↔ ∃ 𝑦 ( ∃ 𝑥𝐴 𝑦 = 𝐵𝑧𝑦 ) )
11 exancom ( ∃ 𝑦 ( ∃ 𝑥𝐴 𝑦 = 𝐵𝑧𝑦 ) ↔ ∃ 𝑦 ( 𝑧𝑦 ∧ ∃ 𝑥𝐴 𝑦 = 𝐵 ) )
12 10 11 bitri ( ∃ 𝑦𝑥𝐴 ( 𝑦 = 𝐵𝑧𝑦 ) ↔ ∃ 𝑦 ( 𝑧𝑦 ∧ ∃ 𝑥𝐴 𝑦 = 𝐵 ) )
13 8 12 bitrdi ( ∀ 𝑥𝐴 𝐵𝐶 → ( ∃ 𝑥𝐴 𝑧𝐵 ↔ ∃ 𝑦 ( 𝑧𝑦 ∧ ∃ 𝑥𝐴 𝑦 = 𝐵 ) ) )
14 eliun ( 𝑧 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴 𝑧𝐵 )
15 eluniab ( 𝑧 { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } ↔ ∃ 𝑦 ( 𝑧𝑦 ∧ ∃ 𝑥𝐴 𝑦 = 𝐵 ) )
16 13 14 15 3bitr4g ( ∀ 𝑥𝐴 𝐵𝐶 → ( 𝑧 𝑥𝐴 𝐵𝑧 { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } ) )
17 16 eqrdv ( ∀ 𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } )