Description: Alternate definition of indexed union when B is a set. (Contributed by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfiun3g | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiun2g | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) | |
| 2 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 3 | 2 | rnmpt | ⊢ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } |
| 4 | 3 | unieqi | ⊢ ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } |
| 5 | 1 4 | eqtr4di | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |