Metamath Proof Explorer


Theorem dfiunv2

Description: Define double indexed union. (Contributed by FL, 6-Nov-2013)

Ref Expression
Assertion dfiunv2 𝑥𝐴 𝑦𝐵 𝐶 = { 𝑧 ∣ ∃ 𝑥𝐴𝑦𝐵 𝑧𝐶 }

Proof

Step Hyp Ref Expression
1 df-iun 𝑦𝐵 𝐶 = { 𝑤 ∣ ∃ 𝑦𝐵 𝑤𝐶 }
2 1 a1i ( 𝑥𝐴 𝑦𝐵 𝐶 = { 𝑤 ∣ ∃ 𝑦𝐵 𝑤𝐶 } )
3 2 iuneq2i 𝑥𝐴 𝑦𝐵 𝐶 = 𝑥𝐴 { 𝑤 ∣ ∃ 𝑦𝐵 𝑤𝐶 }
4 df-iun 𝑥𝐴 { 𝑤 ∣ ∃ 𝑦𝐵 𝑤𝐶 } = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 ∈ { 𝑤 ∣ ∃ 𝑦𝐵 𝑤𝐶 } }
5 vex 𝑧 ∈ V
6 eleq1w ( 𝑤 = 𝑧 → ( 𝑤𝐶𝑧𝐶 ) )
7 6 rexbidv ( 𝑤 = 𝑧 → ( ∃ 𝑦𝐵 𝑤𝐶 ↔ ∃ 𝑦𝐵 𝑧𝐶 ) )
8 5 7 elab ( 𝑧 ∈ { 𝑤 ∣ ∃ 𝑦𝐵 𝑤𝐶 } ↔ ∃ 𝑦𝐵 𝑧𝐶 )
9 8 rexbii ( ∃ 𝑥𝐴 𝑧 ∈ { 𝑤 ∣ ∃ 𝑦𝐵 𝑤𝐶 } ↔ ∃ 𝑥𝐴𝑦𝐵 𝑧𝐶 )
10 9 abbii { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 ∈ { 𝑤 ∣ ∃ 𝑦𝐵 𝑤𝐶 } } = { 𝑧 ∣ ∃ 𝑥𝐴𝑦𝐵 𝑧𝐶 }
11 3 4 10 3eqtri 𝑥𝐴 𝑦𝐵 𝐶 = { 𝑧 ∣ ∃ 𝑥𝐴𝑦𝐵 𝑧𝐶 }