Description: Eliminate the expression { x | x e. A } in df-ixp , under the assumption that A and x are disjoint. This way, we can say that x is bound in X_ x e. A B even if it appears free in A . (Contributed by Mario Carneiro, 12-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfixp | ⊢ X 𝑥 ∈ 𝐴 𝐵 = { 𝑓 ∣ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ixp | ⊢ X 𝑥 ∈ 𝐴 𝐵 = { 𝑓 ∣ ( 𝑓 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) } | |
| 2 | abid2 | ⊢ { 𝑥 ∣ 𝑥 ∈ 𝐴 } = 𝐴 | |
| 3 | 2 | fneq2i | ⊢ ( 𝑓 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ↔ 𝑓 Fn 𝐴 ) | 
| 4 | 3 | anbi1i | ⊢ ( ( 𝑓 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) | 
| 5 | 4 | abbii | ⊢ { 𝑓 ∣ ( 𝑓 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) } = { 𝑓 ∣ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) } | 
| 6 | 1 5 | eqtri | ⊢ X 𝑥 ∈ 𝐴 𝐵 = { 𝑓 ∣ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) } |