Database BASIC ALGEBRAIC STRUCTURES Subring algebras and ideals Left ideals and spans dflidl2  
				
		 
		
			
		 
		Description:   Alternate (the usual textbook) definition of a (left) ideal of a ring to
       be a subgroup of the additive group of the ring which is closed under
       left-multiplication by elements of the full ring.  (Contributed by AV , 13-Feb-2025)   (Proof shortened by AV , 18-Apr-2025) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						dflidl2.u ⊢  𝑈   =  ( LIdeal ‘ 𝑅  )  
					
						dflidl2.b ⊢  𝐵   =  ( Base ‘ 𝑅  )  
					
						dflidl2.t ⊢   ·    =  ( .r  ‘ 𝑅  )  
				
					Assertion 
					dflidl2 ⊢   ( 𝑅   ∈  Ring  →  ( 𝐼   ∈  𝑈   ↔  ( 𝐼   ∈  ( SubGrp ‘ 𝑅  )  ∧  ∀ 𝑥   ∈  𝐵  ∀ 𝑦   ∈  𝐼  ( 𝑥   ·   𝑦  )  ∈  𝐼  ) ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							dflidl2.u ⊢  𝑈   =  ( LIdeal ‘ 𝑅  )  
						
							2 
								
							 
							dflidl2.b ⊢  𝐵   =  ( Base ‘ 𝑅  )  
						
							3 
								
							 
							dflidl2.t ⊢   ·    =  ( .r  ‘ 𝑅  )  
						
							4 
								1 
							 
							lidlsubg ⊢  ( ( 𝑅   ∈  Ring  ∧  𝐼   ∈  𝑈  )  →  𝐼   ∈  ( SubGrp ‘ 𝑅  ) )  
						
							5 
								
							 
							ringrng ⊢  ( 𝑅   ∈  Ring  →  𝑅   ∈  Rng )  
						
							6 
								1  2  3 
							 
							dflidl2rng ⊢  ( ( 𝑅   ∈  Rng  ∧  𝐼   ∈  ( SubGrp ‘ 𝑅  ) )  →  ( 𝐼   ∈  𝑈   ↔  ∀ 𝑥   ∈  𝐵  ∀ 𝑦   ∈  𝐼  ( 𝑥   ·   𝑦  )  ∈  𝐼  ) )  
						
							7 
								5  6 
							 
							sylan ⊢  ( ( 𝑅   ∈  Ring  ∧  𝐼   ∈  ( SubGrp ‘ 𝑅  ) )  →  ( 𝐼   ∈  𝑈   ↔  ∀ 𝑥   ∈  𝐵  ∀ 𝑦   ∈  𝐼  ( 𝑥   ·   𝑦  )  ∈  𝐼  ) )  
						
							8 
								4  7 
							 
							biadanid ⊢  ( 𝑅   ∈  Ring  →  ( 𝐼   ∈  𝑈   ↔  ( 𝐼   ∈  ( SubGrp ‘ 𝑅  )  ∧  ∀ 𝑥   ∈  𝐵  ∀ 𝑦   ∈  𝐼  ( 𝑥   ·   𝑦  )  ∈  𝐼  ) ) )