Step |
Hyp |
Ref |
Expression |
1 |
|
dflidl2.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
2 |
|
dflidl2.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
dflidl2.t |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
2
|
subgss |
⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → 𝐼 ⊆ 𝐵 ) |
5 |
4
|
adantr |
⊢ ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → 𝐼 ⊆ 𝐵 ) |
6 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
7 |
6
|
subg0cl |
⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) ∈ 𝐼 ) |
8 |
7
|
ne0d |
⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → 𝐼 ≠ ∅ ) |
9 |
8
|
adantr |
⊢ ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → 𝐼 ≠ ∅ ) |
10 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
11 |
10
|
subgcl |
⊢ ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐼 ) |
12 |
11
|
ad4ant134 |
⊢ ( ( ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼 ) ) ∧ ( 𝑥 · 𝑦 ) ∈ 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐼 ) |
13 |
12
|
ralrimiva |
⊢ ( ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼 ) ) ∧ ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → ∀ 𝑧 ∈ 𝐼 ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐼 ) |
14 |
13
|
ex |
⊢ ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼 ) ) → ( ( 𝑥 · 𝑦 ) ∈ 𝐼 → ∀ 𝑧 ∈ 𝐼 ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐼 ) ) |
15 |
14
|
ralimdvva |
⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 𝐼 ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐼 ) ) |
16 |
15
|
imp |
⊢ ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 𝐼 ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐼 ) |
17 |
1 2 10 3
|
islidl |
⊢ ( 𝐼 ∈ 𝑈 ↔ ( 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 𝐼 ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐼 ) ) |
18 |
5 9 16 17
|
syl3anbrc |
⊢ ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → 𝐼 ∈ 𝑈 ) |