Metamath Proof Explorer


Theorem dflidl2lem

Description: Lemma for dflidl2 : a sufficient condition for a set to be a left ideal. (Contributed by AV, 13-Feb-2025)

Ref Expression
Hypotheses dflidl2.u 𝑈 = ( LIdeal ‘ 𝑅 )
dflidl2.b 𝐵 = ( Base ‘ 𝑅 )
dflidl2.t · = ( .r𝑅 )
Assertion dflidl2lem ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → 𝐼𝑈 )

Proof

Step Hyp Ref Expression
1 dflidl2.u 𝑈 = ( LIdeal ‘ 𝑅 )
2 dflidl2.b 𝐵 = ( Base ‘ 𝑅 )
3 dflidl2.t · = ( .r𝑅 )
4 2 subgss ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → 𝐼𝐵 )
5 4 adantr ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → 𝐼𝐵 )
6 eqid ( 0g𝑅 ) = ( 0g𝑅 )
7 6 subg0cl ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → ( 0g𝑅 ) ∈ 𝐼 )
8 7 ne0d ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → 𝐼 ≠ ∅ )
9 8 adantr ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → 𝐼 ≠ ∅ )
10 eqid ( +g𝑅 ) = ( +g𝑅 )
11 10 subgcl ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 𝑥 · 𝑦 ) ∈ 𝐼𝑧𝐼 ) → ( ( 𝑥 · 𝑦 ) ( +g𝑅 ) 𝑧 ) ∈ 𝐼 )
12 11 ad4ant134 ( ( ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 𝑥𝐵𝑦𝐼 ) ) ∧ ( 𝑥 · 𝑦 ) ∈ 𝐼 ) ∧ 𝑧𝐼 ) → ( ( 𝑥 · 𝑦 ) ( +g𝑅 ) 𝑧 ) ∈ 𝐼 )
13 12 ralrimiva ( ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 𝑥𝐵𝑦𝐼 ) ) ∧ ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → ∀ 𝑧𝐼 ( ( 𝑥 · 𝑦 ) ( +g𝑅 ) 𝑧 ) ∈ 𝐼 )
14 13 ex ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 𝑥𝐵𝑦𝐼 ) ) → ( ( 𝑥 · 𝑦 ) ∈ 𝐼 → ∀ 𝑧𝐼 ( ( 𝑥 · 𝑦 ) ( +g𝑅 ) 𝑧 ) ∈ 𝐼 ) )
15 14 ralimdvva ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → ( ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 → ∀ 𝑥𝐵𝑦𝐼𝑧𝐼 ( ( 𝑥 · 𝑦 ) ( +g𝑅 ) 𝑧 ) ∈ 𝐼 ) )
16 15 imp ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → ∀ 𝑥𝐵𝑦𝐼𝑧𝐼 ( ( 𝑥 · 𝑦 ) ( +g𝑅 ) 𝑧 ) ∈ 𝐼 )
17 1 2 10 3 islidl ( 𝐼𝑈 ↔ ( 𝐼𝐵𝐼 ≠ ∅ ∧ ∀ 𝑥𝐵𝑦𝐼𝑧𝐼 ( ( 𝑥 · 𝑦 ) ( +g𝑅 ) 𝑧 ) ∈ 𝐼 ) )
18 5 9 16 17 syl3anbrc ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → 𝐼𝑈 )