| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dflidl2rng.u | ⊢ 𝑈  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 2 |  | dflidl2rng.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | dflidl2rng.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 4 |  | simpll | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  𝐼  ∈  𝑈 )  →  𝑅  ∈  Rng ) | 
						
							| 5 |  | simpr | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  𝐼  ∈  𝑈 )  →  𝐼  ∈  𝑈 ) | 
						
							| 6 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 7 | 6 | subg0cl | ⊢ ( 𝐼  ∈  ( SubGrp ‘ 𝑅 )  →  ( 0g ‘ 𝑅 )  ∈  𝐼 ) | 
						
							| 8 | 7 | ad2antlr | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  𝐼  ∈  𝑈 )  →  ( 0g ‘ 𝑅 )  ∈  𝐼 ) | 
						
							| 9 | 4 5 8 | 3jca | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  𝐼  ∈  𝑈 )  →  ( 𝑅  ∈  Rng  ∧  𝐼  ∈  𝑈  ∧  ( 0g ‘ 𝑅 )  ∈  𝐼 ) ) | 
						
							| 10 | 6 2 3 1 | rnglidlmcl | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  𝑈  ∧  ( 0g ‘ 𝑅 )  ∈  𝐼 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐼 ) )  →  ( 𝑥  ·  𝑦 )  ∈  𝐼 ) | 
						
							| 11 | 9 10 | sylan | ⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  𝐼  ∈  𝑈 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐼 ) )  →  ( 𝑥  ·  𝑦 )  ∈  𝐼 ) | 
						
							| 12 | 11 | ralrimivva | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  𝐼  ∈  𝑈 )  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐼 ( 𝑥  ·  𝑦 )  ∈  𝐼 ) | 
						
							| 13 | 2 | subgss | ⊢ ( 𝐼  ∈  ( SubGrp ‘ 𝑅 )  →  𝐼  ⊆  𝐵 ) | 
						
							| 14 | 13 | ad2antlr | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐼 ( 𝑥  ·  𝑦 )  ∈  𝐼 )  →  𝐼  ⊆  𝐵 ) | 
						
							| 15 | 7 | ne0d | ⊢ ( 𝐼  ∈  ( SubGrp ‘ 𝑅 )  →  𝐼  ≠  ∅ ) | 
						
							| 16 | 15 | ad2antlr | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐼 ( 𝑥  ·  𝑦 )  ∈  𝐼 )  →  𝐼  ≠  ∅ ) | 
						
							| 17 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 18 | 17 | subgcl | ⊢ ( ( 𝐼  ∈  ( SubGrp ‘ 𝑅 )  ∧  ( 𝑥  ·  𝑦 )  ∈  𝐼  ∧  𝑧  ∈  𝐼 )  →  ( ( 𝑥  ·  𝑦 ) ( +g ‘ 𝑅 ) 𝑧 )  ∈  𝐼 ) | 
						
							| 19 | 18 | ad5ant245 | ⊢ ( ( ( ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐼 ) )  ∧  ( 𝑥  ·  𝑦 )  ∈  𝐼 )  ∧  𝑧  ∈  𝐼 )  →  ( ( 𝑥  ·  𝑦 ) ( +g ‘ 𝑅 ) 𝑧 )  ∈  𝐼 ) | 
						
							| 20 | 19 | ralrimiva | ⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐼 ) )  ∧  ( 𝑥  ·  𝑦 )  ∈  𝐼 )  →  ∀ 𝑧  ∈  𝐼 ( ( 𝑥  ·  𝑦 ) ( +g ‘ 𝑅 ) 𝑧 )  ∈  𝐼 ) | 
						
							| 21 | 20 | ex | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐼 ) )  →  ( ( 𝑥  ·  𝑦 )  ∈  𝐼  →  ∀ 𝑧  ∈  𝐼 ( ( 𝑥  ·  𝑦 ) ( +g ‘ 𝑅 ) 𝑧 )  ∈  𝐼 ) ) | 
						
							| 22 | 21 | ralimdvva | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐼 ( 𝑥  ·  𝑦 )  ∈  𝐼  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐼 ∀ 𝑧  ∈  𝐼 ( ( 𝑥  ·  𝑦 ) ( +g ‘ 𝑅 ) 𝑧 )  ∈  𝐼 ) ) | 
						
							| 23 | 22 | imp | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐼 ( 𝑥  ·  𝑦 )  ∈  𝐼 )  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐼 ∀ 𝑧  ∈  𝐼 ( ( 𝑥  ·  𝑦 ) ( +g ‘ 𝑅 ) 𝑧 )  ∈  𝐼 ) | 
						
							| 24 | 1 2 17 3 | islidl | ⊢ ( 𝐼  ∈  𝑈  ↔  ( 𝐼  ⊆  𝐵  ∧  𝐼  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐼 ∀ 𝑧  ∈  𝐼 ( ( 𝑥  ·  𝑦 ) ( +g ‘ 𝑅 ) 𝑧 )  ∈  𝐼 ) ) | 
						
							| 25 | 14 16 23 24 | syl3anbrc | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐼 ( 𝑥  ·  𝑦 )  ∈  𝐼 )  →  𝐼  ∈  𝑈 ) | 
						
							| 26 | 12 25 | impbida | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  →  ( 𝐼  ∈  𝑈  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐼 ( 𝑥  ·  𝑦 )  ∈  𝐼 ) ) |