Metamath Proof Explorer


Theorem dflidl2rng

Description: Alternate (the usual textbook) definition of a (left) ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025)

Ref Expression
Hypotheses dflidl2rng.u 𝑈 = ( LIdeal ‘ 𝑅 )
dflidl2rng.b 𝐵 = ( Base ‘ 𝑅 )
dflidl2rng.t · = ( .r𝑅 )
Assertion dflidl2rng ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝐼𝑈 ↔ ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) )

Proof

Step Hyp Ref Expression
1 dflidl2rng.u 𝑈 = ( LIdeal ‘ 𝑅 )
2 dflidl2rng.b 𝐵 = ( Base ‘ 𝑅 )
3 dflidl2rng.t · = ( .r𝑅 )
4 simpll ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ 𝐼𝑈 ) → 𝑅 ∈ Rng )
5 simpr ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ 𝐼𝑈 ) → 𝐼𝑈 )
6 eqid ( 0g𝑅 ) = ( 0g𝑅 )
7 6 subg0cl ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → ( 0g𝑅 ) ∈ 𝐼 )
8 7 ad2antlr ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ 𝐼𝑈 ) → ( 0g𝑅 ) ∈ 𝐼 )
9 4 5 8 3jca ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ 𝐼𝑈 ) → ( 𝑅 ∈ Rng ∧ 𝐼𝑈 ∧ ( 0g𝑅 ) ∈ 𝐼 ) )
10 6 2 3 1 rnglidlmcl ( ( ( 𝑅 ∈ Rng ∧ 𝐼𝑈 ∧ ( 0g𝑅 ) ∈ 𝐼 ) ∧ ( 𝑥𝐵𝑦𝐼 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐼 )
11 9 10 sylan ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ 𝐼𝑈 ) ∧ ( 𝑥𝐵𝑦𝐼 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐼 )
12 11 ralrimivva ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ 𝐼𝑈 ) → ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 )
13 2 subgss ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → 𝐼𝐵 )
14 13 ad2antlr ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → 𝐼𝐵 )
15 7 ne0d ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → 𝐼 ≠ ∅ )
16 15 ad2antlr ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → 𝐼 ≠ ∅ )
17 eqid ( +g𝑅 ) = ( +g𝑅 )
18 17 subgcl ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 𝑥 · 𝑦 ) ∈ 𝐼𝑧𝐼 ) → ( ( 𝑥 · 𝑦 ) ( +g𝑅 ) 𝑧 ) ∈ 𝐼 )
19 18 ad5ant245 ( ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑥𝐵𝑦𝐼 ) ) ∧ ( 𝑥 · 𝑦 ) ∈ 𝐼 ) ∧ 𝑧𝐼 ) → ( ( 𝑥 · 𝑦 ) ( +g𝑅 ) 𝑧 ) ∈ 𝐼 )
20 19 ralrimiva ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑥𝐵𝑦𝐼 ) ) ∧ ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → ∀ 𝑧𝐼 ( ( 𝑥 · 𝑦 ) ( +g𝑅 ) 𝑧 ) ∈ 𝐼 )
21 20 ex ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑥𝐵𝑦𝐼 ) ) → ( ( 𝑥 · 𝑦 ) ∈ 𝐼 → ∀ 𝑧𝐼 ( ( 𝑥 · 𝑦 ) ( +g𝑅 ) 𝑧 ) ∈ 𝐼 ) )
22 21 ralimdvva ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 → ∀ 𝑥𝐵𝑦𝐼𝑧𝐼 ( ( 𝑥 · 𝑦 ) ( +g𝑅 ) 𝑧 ) ∈ 𝐼 ) )
23 22 imp ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → ∀ 𝑥𝐵𝑦𝐼𝑧𝐼 ( ( 𝑥 · 𝑦 ) ( +g𝑅 ) 𝑧 ) ∈ 𝐼 )
24 1 2 17 3 islidl ( 𝐼𝑈 ↔ ( 𝐼𝐵𝐼 ≠ ∅ ∧ ∀ 𝑥𝐵𝑦𝐼𝑧𝐼 ( ( 𝑥 · 𝑦 ) ( +g𝑅 ) 𝑧 ) ∈ 𝐼 ) )
25 14 16 23 24 syl3anbrc ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → 𝐼𝑈 )
26 12 25 impbida ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝐼𝑈 ↔ ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) )