Metamath Proof Explorer


Theorem dflim2

Description: An alternate definition of a limit ordinal. (Contributed by NM, 4-Nov-2004)

Ref Expression
Assertion dflim2 ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 df-lim ( Lim 𝐴 ↔ ( Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴 ) )
2 ord0eln0 ( Ord 𝐴 → ( ∅ ∈ 𝐴𝐴 ≠ ∅ ) )
3 2 anbi1d ( Ord 𝐴 → ( ( ∅ ∈ 𝐴𝐴 = 𝐴 ) ↔ ( 𝐴 ≠ ∅ ∧ 𝐴 = 𝐴 ) ) )
4 3 pm5.32i ( ( Ord 𝐴 ∧ ( ∅ ∈ 𝐴𝐴 = 𝐴 ) ) ↔ ( Ord 𝐴 ∧ ( 𝐴 ≠ ∅ ∧ 𝐴 = 𝐴 ) ) )
5 3anass ( ( Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴 ) ↔ ( Ord 𝐴 ∧ ( ∅ ∈ 𝐴𝐴 = 𝐴 ) ) )
6 3anass ( ( Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴 ) ↔ ( Ord 𝐴 ∧ ( 𝐴 ≠ ∅ ∧ 𝐴 = 𝐴 ) ) )
7 4 5 6 3bitr4i ( ( Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴 ) ↔ ( Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴 ) )
8 1 7 bitr4i ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴 ) )