Step |
Hyp |
Ref |
Expression |
1 |
|
df-lim |
⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) ) |
2 |
|
ord0eln0 |
⊢ ( Ord 𝐴 → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
3 |
2
|
anbi1d |
⊢ ( Ord 𝐴 → ( ( ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ↔ ( 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) ) ) |
4 |
3
|
pm5.32i |
⊢ ( ( Ord 𝐴 ∧ ( ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ) ↔ ( Ord 𝐴 ∧ ( 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) ) ) |
5 |
|
3anass |
⊢ ( ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ↔ ( Ord 𝐴 ∧ ( ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ) ) |
6 |
|
3anass |
⊢ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) ↔ ( Ord 𝐴 ∧ ( 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) ) ) |
7 |
4 5 6
|
3bitr4i |
⊢ ( ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ↔ ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) ) |
8 |
1 7
|
bitr4i |
⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ) |