Step |
Hyp |
Ref |
Expression |
1 |
|
dflim2 |
⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ) |
2 |
|
ordunisuc2 |
⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) ) |
3 |
2
|
anbi2d |
⊢ ( Ord 𝐴 → ( ( ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ↔ ( ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) ) ) |
4 |
3
|
pm5.32i |
⊢ ( ( Ord 𝐴 ∧ ( ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ) ↔ ( Ord 𝐴 ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) ) ) |
5 |
|
3anass |
⊢ ( ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ↔ ( Ord 𝐴 ∧ ( ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ) ) |
6 |
|
3anass |
⊢ ( ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) ↔ ( Ord 𝐴 ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) ) ) |
7 |
4 5 6
|
3bitr4i |
⊢ ( ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ↔ ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) ) |
8 |
1 7
|
bitri |
⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) ) |