Metamath Proof Explorer


Theorem dflim4

Description: An alternate definition of a limit ordinal. (Contributed by NM, 1-Feb-2005)

Ref Expression
Assertion dflim4 ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀ 𝑥𝐴 suc 𝑥𝐴 ) )

Proof

Step Hyp Ref Expression
1 dflim2 ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴 ) )
2 ordunisuc2 ( Ord 𝐴 → ( 𝐴 = 𝐴 ↔ ∀ 𝑥𝐴 suc 𝑥𝐴 ) )
3 2 anbi2d ( Ord 𝐴 → ( ( ∅ ∈ 𝐴𝐴 = 𝐴 ) ↔ ( ∅ ∈ 𝐴 ∧ ∀ 𝑥𝐴 suc 𝑥𝐴 ) ) )
4 3 pm5.32i ( ( Ord 𝐴 ∧ ( ∅ ∈ 𝐴𝐴 = 𝐴 ) ) ↔ ( Ord 𝐴 ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑥𝐴 suc 𝑥𝐴 ) ) )
5 3anass ( ( Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴 ) ↔ ( Ord 𝐴 ∧ ( ∅ ∈ 𝐴𝐴 = 𝐴 ) ) )
6 3anass ( ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀ 𝑥𝐴 suc 𝑥𝐴 ) ↔ ( Ord 𝐴 ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑥𝐴 suc 𝑥𝐴 ) ) )
7 4 5 6 3bitr4i ( ( Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴 ) ↔ ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀ 𝑥𝐴 suc 𝑥𝐴 ) )
8 1 7 bitri ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀ 𝑥𝐴 suc 𝑥𝐴 ) )