Step |
Hyp |
Ref |
Expression |
1 |
|
ltrel |
⊢ Rel < |
2 |
|
difss |
⊢ ( ≤ ∖ I ) ⊆ ≤ |
3 |
|
lerel |
⊢ Rel ≤ |
4 |
|
relss |
⊢ ( ( ≤ ∖ I ) ⊆ ≤ → ( Rel ≤ → Rel ( ≤ ∖ I ) ) ) |
5 |
2 3 4
|
mp2 |
⊢ Rel ( ≤ ∖ I ) |
6 |
|
ltrelxr |
⊢ < ⊆ ( ℝ* × ℝ* ) |
7 |
6
|
brel |
⊢ ( 𝑥 < 𝑦 → ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) |
8 |
|
lerelxr |
⊢ ≤ ⊆ ( ℝ* × ℝ* ) |
9 |
2 8
|
sstri |
⊢ ( ≤ ∖ I ) ⊆ ( ℝ* × ℝ* ) |
10 |
9
|
brel |
⊢ ( 𝑥 ( ≤ ∖ I ) 𝑦 → ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) |
11 |
|
xrltlen |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 < 𝑦 ↔ ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥 ) ) ) |
12 |
|
equcom |
⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) |
13 |
|
vex |
⊢ 𝑦 ∈ V |
14 |
13
|
ideq |
⊢ ( 𝑥 I 𝑦 ↔ 𝑥 = 𝑦 ) |
15 |
12 14
|
bitr4i |
⊢ ( 𝑦 = 𝑥 ↔ 𝑥 I 𝑦 ) |
16 |
15
|
necon3abii |
⊢ ( 𝑦 ≠ 𝑥 ↔ ¬ 𝑥 I 𝑦 ) |
17 |
16
|
anbi2i |
⊢ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥 ) ↔ ( 𝑥 ≤ 𝑦 ∧ ¬ 𝑥 I 𝑦 ) ) |
18 |
11 17
|
bitrdi |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 < 𝑦 ↔ ( 𝑥 ≤ 𝑦 ∧ ¬ 𝑥 I 𝑦 ) ) ) |
19 |
|
brdif |
⊢ ( 𝑥 ( ≤ ∖ I ) 𝑦 ↔ ( 𝑥 ≤ 𝑦 ∧ ¬ 𝑥 I 𝑦 ) ) |
20 |
18 19
|
bitr4di |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 < 𝑦 ↔ 𝑥 ( ≤ ∖ I ) 𝑦 ) ) |
21 |
7 10 20
|
pm5.21nii |
⊢ ( 𝑥 < 𝑦 ↔ 𝑥 ( ≤ ∖ I ) 𝑦 ) |
22 |
1 5 21
|
eqbrriv |
⊢ < = ( ≤ ∖ I ) |