Metamath Proof Explorer


Theorem dflt2

Description: Alternative definition of 'less than' in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015)

Ref Expression
Assertion dflt2 < = ( ≤ ∖ I )

Proof

Step Hyp Ref Expression
1 ltrel Rel <
2 difss ( ≤ ∖ I ) ⊆ ≤
3 lerel Rel ≤
4 relss ( ( ≤ ∖ I ) ⊆ ≤ → ( Rel ≤ → Rel ( ≤ ∖ I ) ) )
5 2 3 4 mp2 Rel ( ≤ ∖ I )
6 ltrelxr < ⊆ ( ℝ* × ℝ* )
7 6 brel ( 𝑥 < 𝑦 → ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) )
8 lerelxr ≤ ⊆ ( ℝ* × ℝ* )
9 2 8 sstri ( ≤ ∖ I ) ⊆ ( ℝ* × ℝ* )
10 9 brel ( 𝑥 ( ≤ ∖ I ) 𝑦 → ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) )
11 xrltlen ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) → ( 𝑥 < 𝑦 ↔ ( 𝑥𝑦𝑦𝑥 ) ) )
12 equcom ( 𝑦 = 𝑥𝑥 = 𝑦 )
13 vex 𝑦 ∈ V
14 13 ideq ( 𝑥 I 𝑦𝑥 = 𝑦 )
15 12 14 bitr4i ( 𝑦 = 𝑥𝑥 I 𝑦 )
16 15 necon3abii ( 𝑦𝑥 ↔ ¬ 𝑥 I 𝑦 )
17 16 anbi2i ( ( 𝑥𝑦𝑦𝑥 ) ↔ ( 𝑥𝑦 ∧ ¬ 𝑥 I 𝑦 ) )
18 11 17 bitrdi ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) → ( 𝑥 < 𝑦 ↔ ( 𝑥𝑦 ∧ ¬ 𝑥 I 𝑦 ) ) )
19 brdif ( 𝑥 ( ≤ ∖ I ) 𝑦 ↔ ( 𝑥𝑦 ∧ ¬ 𝑥 I 𝑦 ) )
20 18 19 bitr4di ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) → ( 𝑥 < 𝑦𝑥 ( ≤ ∖ I ) 𝑦 ) )
21 7 10 20 pm5.21nii ( 𝑥 < 𝑦𝑥 ( ≤ ∖ I ) 𝑦 )
22 1 5 21 eqbrriv < = ( ≤ ∖ I )