Metamath Proof Explorer


Theorem dfmo

Description: Rederive df-mo from the old definition moeu . (Contributed by Wolf Lammen, 27-May-2019) (Proof modification is discouraged.) Use df-mo instead. (New usage is discouraged.)

Ref Expression
Assertion dfmo ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )

Proof

Step Hyp Ref Expression
1 moeu ( ∃* 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) )
2 eu6 ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )
3 2 imbi2i ( ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) ↔ ( ∃ 𝑥 𝜑 → ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) )
4 dfmoeu ( ( ∃ 𝑥 𝜑 → ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )
5 1 3 4 3bitri ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )