| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 ) |
| 2 |
|
pm2.21 |
⊢ ( ¬ 𝜑 → ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 3 |
2
|
alimi |
⊢ ( ∀ 𝑥 ¬ 𝜑 → ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 4 |
1 3
|
sylbir |
⊢ ( ¬ ∃ 𝑥 𝜑 → ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 5 |
4
|
19.8ad |
⊢ ( ¬ ∃ 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 6 |
|
biimp |
⊢ ( ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 7 |
6
|
alimi |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 8 |
7
|
eximi |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 9 |
5 8
|
ja |
⊢ ( ( ∃ 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) → ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 10 |
|
nfia1 |
⊢ Ⅎ 𝑥 ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
| 11 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
| 12 |
|
ax12v |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
| 13 |
12
|
com12 |
⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
| 14 |
11 13
|
embantd |
⊢ ( 𝜑 → ( ( 𝜑 → 𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
| 15 |
14
|
spsd |
⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
| 16 |
15
|
ancld |
⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) ) |
| 17 |
|
albiim |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
| 18 |
16 17
|
imbitrrdi |
⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 19 |
10 18
|
exlimi |
⊢ ( ∃ 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 20 |
19
|
eximdv |
⊢ ( ∃ 𝑥 𝜑 → ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 21 |
20
|
com12 |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ( ∃ 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 22 |
9 21
|
impbii |
⊢ ( ( ∃ 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |