| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfmpo.1 | ⊢ 𝐶  ∈  V | 
						
							| 2 |  | mpompts | ⊢ ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝐶 )  =  ( 𝑤  ∈  ( 𝐴  ×  𝐵 )  ↦  ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ 𝐶 ) | 
						
							| 3 | 1 | csbex | ⊢ ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ 𝐶  ∈  V | 
						
							| 4 | 3 | csbex | ⊢ ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ 𝐶  ∈  V | 
						
							| 5 | 4 | dfmpt | ⊢ ( 𝑤  ∈  ( 𝐴  ×  𝐵 )  ↦  ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ 𝐶 )  =  ∪  𝑤  ∈  ( 𝐴  ×  𝐵 ) { 〈 𝑤 ,  ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ 𝐶 〉 } | 
						
							| 6 |  | nfcv | ⊢ Ⅎ 𝑥 𝑤 | 
						
							| 7 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ 𝐶 | 
						
							| 8 | 6 7 | nfop | ⊢ Ⅎ 𝑥 〈 𝑤 ,  ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ 𝐶 〉 | 
						
							| 9 | 8 | nfsn | ⊢ Ⅎ 𝑥 { 〈 𝑤 ,  ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ 𝐶 〉 } | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑦 𝑤 | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑦 ( 1st  ‘ 𝑤 ) | 
						
							| 12 |  | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ 𝐶 | 
						
							| 13 | 11 12 | nfcsbw | ⊢ Ⅎ 𝑦 ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ 𝐶 | 
						
							| 14 | 10 13 | nfop | ⊢ Ⅎ 𝑦 〈 𝑤 ,  ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ 𝐶 〉 | 
						
							| 15 | 14 | nfsn | ⊢ Ⅎ 𝑦 { 〈 𝑤 ,  ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ 𝐶 〉 } | 
						
							| 16 |  | nfcv | ⊢ Ⅎ 𝑤 { 〈 〈 𝑥 ,  𝑦 〉 ,  𝐶 〉 } | 
						
							| 17 |  | id | ⊢ ( 𝑤  =  〈 𝑥 ,  𝑦 〉  →  𝑤  =  〈 𝑥 ,  𝑦 〉 ) | 
						
							| 18 |  | csbopeq1a | ⊢ ( 𝑤  =  〈 𝑥 ,  𝑦 〉  →  ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ 𝐶  =  𝐶 ) | 
						
							| 19 | 17 18 | opeq12d | ⊢ ( 𝑤  =  〈 𝑥 ,  𝑦 〉  →  〈 𝑤 ,  ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ 𝐶 〉  =  〈 〈 𝑥 ,  𝑦 〉 ,  𝐶 〉 ) | 
						
							| 20 | 19 | sneqd | ⊢ ( 𝑤  =  〈 𝑥 ,  𝑦 〉  →  { 〈 𝑤 ,  ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ 𝐶 〉 }  =  { 〈 〈 𝑥 ,  𝑦 〉 ,  𝐶 〉 } ) | 
						
							| 21 | 9 15 16 20 | iunxpf | ⊢ ∪  𝑤  ∈  ( 𝐴  ×  𝐵 ) { 〈 𝑤 ,  ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ 𝐶 〉 }  =  ∪  𝑥  ∈  𝐴 ∪  𝑦  ∈  𝐵 { 〈 〈 𝑥 ,  𝑦 〉 ,  𝐶 〉 } | 
						
							| 22 | 2 5 21 | 3eqtri | ⊢ ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝐶 )  =  ∪  𝑥  ∈  𝐴 ∪  𝑦  ∈  𝐵 { 〈 〈 𝑥 ,  𝑦 〉 ,  𝐶 〉 } |