| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfmpo.1 |
⊢ 𝐶 ∈ V |
| 2 |
|
mpompts |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↦ ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 ) |
| 3 |
1
|
csbex |
⊢ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 ∈ V |
| 4 |
3
|
csbex |
⊢ ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 ∈ V |
| 5 |
4
|
dfmpt |
⊢ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↦ ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 ) = ∪ 𝑤 ∈ ( 𝐴 × 𝐵 ) { 〈 𝑤 , ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 〉 } |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑤 |
| 7 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 |
| 8 |
6 7
|
nfop |
⊢ Ⅎ 𝑥 〈 𝑤 , ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 〉 |
| 9 |
8
|
nfsn |
⊢ Ⅎ 𝑥 { 〈 𝑤 , ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 〉 } |
| 10 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑤 |
| 11 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 1st ‘ 𝑤 ) |
| 12 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 |
| 13 |
11 12
|
nfcsbw |
⊢ Ⅎ 𝑦 ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 |
| 14 |
10 13
|
nfop |
⊢ Ⅎ 𝑦 〈 𝑤 , ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 〉 |
| 15 |
14
|
nfsn |
⊢ Ⅎ 𝑦 { 〈 𝑤 , ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 〉 } |
| 16 |
|
nfcv |
⊢ Ⅎ 𝑤 { 〈 〈 𝑥 , 𝑦 〉 , 𝐶 〉 } |
| 17 |
|
id |
⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → 𝑤 = 〈 𝑥 , 𝑦 〉 ) |
| 18 |
|
csbopeq1a |
⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 = 𝐶 ) |
| 19 |
17 18
|
opeq12d |
⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → 〈 𝑤 , ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 〉 = 〈 〈 𝑥 , 𝑦 〉 , 𝐶 〉 ) |
| 20 |
19
|
sneqd |
⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → { 〈 𝑤 , ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 〉 } = { 〈 〈 𝑥 , 𝑦 〉 , 𝐶 〉 } ) |
| 21 |
9 15 16 20
|
iunxpf |
⊢ ∪ 𝑤 ∈ ( 𝐴 × 𝐵 ) { 〈 𝑤 , ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 〉 } = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 { 〈 〈 𝑥 , 𝑦 〉 , 𝐶 〉 } |
| 22 |
2 5 21
|
3eqtri |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 { 〈 〈 𝑥 , 𝑦 〉 , 𝐶 〉 } |