Metamath Proof Explorer


Theorem dfmpt

Description: Alternate definition for the maps-to notation df-mpt (although it requires that B be a set). (Contributed by NM, 24-Aug-2010) (Revised by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypothesis dfmpt.1 𝐵 ∈ V
Assertion dfmpt ( 𝑥𝐴𝐵 ) = 𝑥𝐴 { ⟨ 𝑥 , 𝐵 ⟩ }

Proof

Step Hyp Ref Expression
1 dfmpt.1 𝐵 ∈ V
2 dfmpt3 ( 𝑥𝐴𝐵 ) = 𝑥𝐴 ( { 𝑥 } × { 𝐵 } )
3 vex 𝑥 ∈ V
4 3 1 xpsn ( { 𝑥 } × { 𝐵 } ) = { ⟨ 𝑥 , 𝐵 ⟩ }
5 4 a1i ( 𝑥𝐴 → ( { 𝑥 } × { 𝐵 } ) = { ⟨ 𝑥 , 𝐵 ⟩ } )
6 5 iuneq2i 𝑥𝐴 ( { 𝑥 } × { 𝐵 } ) = 𝑥𝐴 { ⟨ 𝑥 , 𝐵 ⟩ }
7 2 6 eqtri ( 𝑥𝐴𝐵 ) = 𝑥𝐴 { ⟨ 𝑥 , 𝐵 ⟩ }