Metamath Proof Explorer


Theorem dfn2

Description: The set of positive integers defined in terms of nonnegative integers. (Contributed by NM, 23-Sep-2007) (Proof shortened by Mario Carneiro, 13-Feb-2013)

Ref Expression
Assertion dfn2 ℕ = ( ℕ0 ∖ { 0 } )

Proof

Step Hyp Ref Expression
1 df-n0 0 = ( ℕ ∪ { 0 } )
2 1 difeq1i ( ℕ0 ∖ { 0 } ) = ( ( ℕ ∪ { 0 } ) ∖ { 0 } )
3 difun2 ( ( ℕ ∪ { 0 } ) ∖ { 0 } ) = ( ℕ ∖ { 0 } )
4 0nnn ¬ 0 ∈ ℕ
5 difsn ( ¬ 0 ∈ ℕ → ( ℕ ∖ { 0 } ) = ℕ )
6 4 5 ax-mp ( ℕ ∖ { 0 } ) = ℕ
7 2 3 6 3eqtrri ℕ = ( ℕ0 ∖ { 0 } )