Metamath Proof Explorer


Theorem dfnf5

Description: Characterization of nonfreeness in a formula in terms of its extension. (Contributed by BJ, 19-Mar-2021)

Ref Expression
Assertion dfnf5 ( Ⅎ 𝑥 𝜑 ↔ ( { 𝑥𝜑 } = V ∨ { 𝑥𝜑 } = ∅ ) )

Proof

Step Hyp Ref Expression
1 nf3 ( Ⅎ 𝑥 𝜑 ↔ ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 ¬ 𝜑 ) )
2 abv ( { 𝑥𝜑 } = V ↔ ∀ 𝑥 𝜑 )
3 ab0 ( { 𝑥𝜑 } = ∅ ↔ ∀ 𝑥 ¬ 𝜑 )
4 2 3 orbi12i ( ( { 𝑥𝜑 } = V ∨ { 𝑥𝜑 } = ∅ ) ↔ ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 ¬ 𝜑 ) )
5 1 4 bitr4i ( Ⅎ 𝑥 𝜑 ↔ ( { 𝑥𝜑 } = V ∨ { 𝑥𝜑 } = ∅ ) )