Description: Characterization of nonfreeness in a formula in terms of its extension. (Contributed by BJ, 19-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | dfnf5 | ⊢ ( Ⅎ 𝑥 𝜑 ↔ ( { 𝑥 ∣ 𝜑 } = V ∨ { 𝑥 ∣ 𝜑 } = ∅ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf3 | ⊢ ( Ⅎ 𝑥 𝜑 ↔ ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 ¬ 𝜑 ) ) | |
2 | abv | ⊢ ( { 𝑥 ∣ 𝜑 } = V ↔ ∀ 𝑥 𝜑 ) | |
3 | ab0 | ⊢ ( { 𝑥 ∣ 𝜑 } = ∅ ↔ ∀ 𝑥 ¬ 𝜑 ) | |
4 | 2 3 | orbi12i | ⊢ ( ( { 𝑥 ∣ 𝜑 } = V ∨ { 𝑥 ∣ 𝜑 } = ∅ ) ↔ ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 ¬ 𝜑 ) ) |
5 | 1 4 | bitr4i | ⊢ ( Ⅎ 𝑥 𝜑 ↔ ( { 𝑥 ∣ 𝜑 } = V ∨ { 𝑥 ∣ 𝜑 } = ∅ ) ) |