Metamath Proof Explorer


Theorem dfnfc2

Description: An alternative statement of the effective freeness of a class A , when it is a set. (Contributed by Mario Carneiro, 14-Oct-2016) (Proof shortened by JJ, 26-Jul-2021)

Ref Expression
Assertion dfnfc2 ( ∀ 𝑥 𝐴𝑉 → ( 𝑥 𝐴 ↔ ∀ 𝑦𝑥 𝑦 = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 nfcvd ( 𝑥 𝐴 𝑥 𝑦 )
2 id ( 𝑥 𝐴 𝑥 𝐴 )
3 1 2 nfeqd ( 𝑥 𝐴 → Ⅎ 𝑥 𝑦 = 𝐴 )
4 3 alrimiv ( 𝑥 𝐴 → ∀ 𝑦𝑥 𝑦 = 𝐴 )
5 df-nfc ( 𝑥 { 𝐴 } ↔ ∀ 𝑦𝑥 𝑦 ∈ { 𝐴 } )
6 velsn ( 𝑦 ∈ { 𝐴 } ↔ 𝑦 = 𝐴 )
7 6 nfbii ( Ⅎ 𝑥 𝑦 ∈ { 𝐴 } ↔ Ⅎ 𝑥 𝑦 = 𝐴 )
8 7 albii ( ∀ 𝑦𝑥 𝑦 ∈ { 𝐴 } ↔ ∀ 𝑦𝑥 𝑦 = 𝐴 )
9 5 8 sylbbr ( ∀ 𝑦𝑥 𝑦 = 𝐴 𝑥 { 𝐴 } )
10 9 nfunid ( ∀ 𝑦𝑥 𝑦 = 𝐴 𝑥 { 𝐴 } )
11 nfa1 𝑥𝑥 𝐴𝑉
12 unisng ( 𝐴𝑉 { 𝐴 } = 𝐴 )
13 12 sps ( ∀ 𝑥 𝐴𝑉 { 𝐴 } = 𝐴 )
14 11 13 nfceqdf ( ∀ 𝑥 𝐴𝑉 → ( 𝑥 { 𝐴 } ↔ 𝑥 𝐴 ) )
15 10 14 syl5ib ( ∀ 𝑥 𝐴𝑉 → ( ∀ 𝑦𝑥 𝑦 = 𝐴 𝑥 𝐴 ) )
16 4 15 impbid2 ( ∀ 𝑥 𝐴𝑉 → ( 𝑥 𝐴 ↔ ∀ 𝑦𝑥 𝑦 = 𝐴 ) )