Metamath Proof Explorer


Theorem dfnul2

Description: Alternate definition of the empty set. Definition 5.14 of TakeutiZaring p. 20. (Contributed by NM, 26-Dec-1996) Remove dependency on ax-10 , ax-11 , and ax-12 . (Revised by Steven Nguyen, 3-May-2023) (Proof shortened by BJ, 23-Sep-2024)

Ref Expression
Assertion dfnul2 ∅ = { 𝑥 ∣ ¬ 𝑥 = 𝑥 }

Proof

Step Hyp Ref Expression
1 dfnul4 ∅ = { 𝑥 ∣ ⊥ }
2 equid 𝑥 = 𝑥
3 2 notnoti ¬ ¬ 𝑥 = 𝑥
4 3 bifal ( ¬ 𝑥 = 𝑥 ↔ ⊥ )
5 4 abbii { 𝑥 ∣ ¬ 𝑥 = 𝑥 } = { 𝑥 ∣ ⊥ }
6 1 5 eqtr4i ∅ = { 𝑥 ∣ ¬ 𝑥 = 𝑥 }