Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The empty set
dfnul2OLD
Metamath Proof Explorer
Description: Obsolete version of dfnul2 as of 23-Sep-2024. (Contributed by NM , 26-Dec-1996) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Assertion
dfnul2OLD
⊢ ∅ = { 𝑥 ∣ ¬ 𝑥 = 𝑥 }
Proof
Step
Hyp
Ref
Expression
1
df-nul
⊢ ∅ = ( V ∖ V )
2
df-dif
⊢ ( V ∖ V ) = { 𝑥 ∣ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ V ) }
3
pm3.24
⊢ ¬ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ V )
4
equid
⊢ 𝑥 = 𝑥
5
4
notnoti
⊢ ¬ ¬ 𝑥 = 𝑥
6
3 5
2false
⊢ ( ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ V ) ↔ ¬ 𝑥 = 𝑥 )
7
6
abbii
⊢ { 𝑥 ∣ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ V ) } = { 𝑥 ∣ ¬ 𝑥 = 𝑥 }
8
1 2 7
3eqtri
⊢ ∅ = { 𝑥 ∣ ¬ 𝑥 = 𝑥 }