Metamath Proof Explorer


Theorem dfnul2OLD

Description: Obsolete version of dfnul2 as of 23-Sep-2024. (Contributed by NM, 26-Dec-1996) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dfnul2OLD ∅ = { 𝑥 ∣ ¬ 𝑥 = 𝑥 }

Proof

Step Hyp Ref Expression
1 df-nul ∅ = ( V ∖ V )
2 df-dif ( V ∖ V ) = { 𝑥 ∣ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ V ) }
3 pm3.24 ¬ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ V )
4 equid 𝑥 = 𝑥
5 4 notnoti ¬ ¬ 𝑥 = 𝑥
6 3 5 2false ( ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ V ) ↔ ¬ 𝑥 = 𝑥 )
7 6 abbii { 𝑥 ∣ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ V ) } = { 𝑥 ∣ ¬ 𝑥 = 𝑥 }
8 1 2 7 3eqtri ∅ = { 𝑥 ∣ ¬ 𝑥 = 𝑥 }