Description: Alternate definition of the empty set. (Contributed by NM, 25-Mar-2004) (Proof shortened by BJ, 23-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfnul3 | ⊢ ∅ = { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fal | ⊢ ¬ ⊥ | |
| 2 | pm3.24 | ⊢ ¬ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴 ) | |
| 3 | 1 2 | 2false | ⊢ ( ⊥ ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴 ) ) |
| 4 | 3 | abbii | ⊢ { 𝑥 ∣ ⊥ } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴 ) } |
| 5 | dfnul4 | ⊢ ∅ = { 𝑥 ∣ ⊥ } | |
| 6 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴 ) } | |
| 7 | 4 5 6 | 3eqtr4i | ⊢ ∅ = { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴 } |