Metamath Proof Explorer


Theorem dfnul3OLD

Description: Obsolete version of dfnul4 as of 23-Sep-2024. (Contributed by NM, 25-Mar-2004) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dfnul3OLD ∅ = { 𝑥𝐴 ∣ ¬ 𝑥𝐴 }

Proof

Step Hyp Ref Expression
1 pm3.24 ¬ ( 𝑥𝐴 ∧ ¬ 𝑥𝐴 )
2 equid 𝑥 = 𝑥
3 1 2 2th ( ¬ ( 𝑥𝐴 ∧ ¬ 𝑥𝐴 ) ↔ 𝑥 = 𝑥 )
4 3 con1bii ( ¬ 𝑥 = 𝑥 ↔ ( 𝑥𝐴 ∧ ¬ 𝑥𝐴 ) )
5 4 abbii { 𝑥 ∣ ¬ 𝑥 = 𝑥 } = { 𝑥 ∣ ( 𝑥𝐴 ∧ ¬ 𝑥𝐴 ) }
6 dfnul2 ∅ = { 𝑥 ∣ ¬ 𝑥 = 𝑥 }
7 df-rab { 𝑥𝐴 ∣ ¬ 𝑥𝐴 } = { 𝑥 ∣ ( 𝑥𝐴 ∧ ¬ 𝑥𝐴 ) }
8 5 6 7 3eqtr4i ∅ = { 𝑥𝐴 ∣ ¬ 𝑥𝐴 }