Description: Obsolete version of dfnul4 as of 23-Sep-2024. (Contributed by NM, 25-Mar-2004) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | dfnul3OLD | ⊢ ∅ = { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.24 | ⊢ ¬ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴 ) | |
2 | equid | ⊢ 𝑥 = 𝑥 | |
3 | 1 2 | 2th | ⊢ ( ¬ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴 ) ↔ 𝑥 = 𝑥 ) |
4 | 3 | con1bii | ⊢ ( ¬ 𝑥 = 𝑥 ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴 ) ) |
5 | 4 | abbii | ⊢ { 𝑥 ∣ ¬ 𝑥 = 𝑥 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴 ) } |
6 | dfnul2 | ⊢ ∅ = { 𝑥 ∣ ¬ 𝑥 = 𝑥 } | |
7 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴 ) } | |
8 | 5 6 7 | 3eqtr4i | ⊢ ∅ = { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴 } |