Metamath Proof Explorer


Theorem dfnul4

Description: Alternate definition of the empty class/set. (Contributed by BJ, 30-Nov-2019) Avoid ax-8 , df-clel . (Revised by Gino Giotto, 3-Sep-2024) Prove directly from definition to allow shortening dfnul2 . (Revised by BJ, 23-Sep-2024)

Ref Expression
Assertion dfnul4 ∅ = { 𝑥 ∣ ⊥ }

Proof

Step Hyp Ref Expression
1 df-nul ∅ = ( V ∖ V )
2 df-dif ( V ∖ V ) = { 𝑥 ∣ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ V ) }
3 pm3.24 ¬ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ V )
4 3 bifal ( ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ V ) ↔ ⊥ )
5 4 abbii { 𝑥 ∣ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ V ) } = { 𝑥 ∣ ⊥ }
6 1 2 5 3eqtri ∅ = { 𝑥 ∣ ⊥ }