Metamath Proof Explorer


Theorem dfodd2

Description: Alternate definition for odd numbers. (Contributed by AV, 15-Jun-2020)

Ref Expression
Assertion dfodd2 Odd = { 𝑧 ∈ ℤ ∣ ( ( 𝑧 − 1 ) / 2 ) ∈ ℤ }

Proof

Step Hyp Ref Expression
1 isodd2 ( 𝑥 ∈ Odd ↔ ( 𝑥 ∈ ℤ ∧ ( ( 𝑥 − 1 ) / 2 ) ∈ ℤ ) )
2 oveq1 ( 𝑧 = 𝑥 → ( 𝑧 − 1 ) = ( 𝑥 − 1 ) )
3 2 oveq1d ( 𝑧 = 𝑥 → ( ( 𝑧 − 1 ) / 2 ) = ( ( 𝑥 − 1 ) / 2 ) )
4 3 eleq1d ( 𝑧 = 𝑥 → ( ( ( 𝑧 − 1 ) / 2 ) ∈ ℤ ↔ ( ( 𝑥 − 1 ) / 2 ) ∈ ℤ ) )
5 4 elrab ( 𝑥 ∈ { 𝑧 ∈ ℤ ∣ ( ( 𝑧 − 1 ) / 2 ) ∈ ℤ } ↔ ( 𝑥 ∈ ℤ ∧ ( ( 𝑥 − 1 ) / 2 ) ∈ ℤ ) )
6 1 5 bitr4i ( 𝑥 ∈ Odd ↔ 𝑥 ∈ { 𝑧 ∈ ℤ ∣ ( ( 𝑧 − 1 ) / 2 ) ∈ ℤ } )
7 6 eqriv Odd = { 𝑧 ∈ ℤ ∣ ( ( 𝑧 − 1 ) / 2 ) ∈ ℤ }