Step |
Hyp |
Ref |
Expression |
1 |
|
dfodd6 |
⊢ Odd = { 𝑧 ∈ ℤ ∣ ∃ 𝑖 ∈ ℤ 𝑧 = ( ( 2 · 𝑖 ) + 1 ) } |
2 |
|
eqcom |
⊢ ( 𝑧 = ( ( 2 · 𝑖 ) + 1 ) ↔ ( ( 2 · 𝑖 ) + 1 ) = 𝑧 ) |
3 |
2
|
a1i |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → ( 𝑧 = ( ( 2 · 𝑖 ) + 1 ) ↔ ( ( 2 · 𝑖 ) + 1 ) = 𝑧 ) ) |
4 |
3
|
rexbidva |
⊢ ( 𝑧 ∈ ℤ → ( ∃ 𝑖 ∈ ℤ 𝑧 = ( ( 2 · 𝑖 ) + 1 ) ↔ ∃ 𝑖 ∈ ℤ ( ( 2 · 𝑖 ) + 1 ) = 𝑧 ) ) |
5 |
|
odd2np1 |
⊢ ( 𝑧 ∈ ℤ → ( ¬ 2 ∥ 𝑧 ↔ ∃ 𝑖 ∈ ℤ ( ( 2 · 𝑖 ) + 1 ) = 𝑧 ) ) |
6 |
4 5
|
bitr4d |
⊢ ( 𝑧 ∈ ℤ → ( ∃ 𝑖 ∈ ℤ 𝑧 = ( ( 2 · 𝑖 ) + 1 ) ↔ ¬ 2 ∥ 𝑧 ) ) |
7 |
6
|
rabbiia |
⊢ { 𝑧 ∈ ℤ ∣ ∃ 𝑖 ∈ ℤ 𝑧 = ( ( 2 · 𝑖 ) + 1 ) } = { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 } |
8 |
1 7
|
eqtri |
⊢ Odd = { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 } |