| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-om |
⊢ ω = { 𝑥 ∈ On ∣ ∀ 𝑧 ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) } |
| 2 |
|
vex |
⊢ 𝑧 ∈ V |
| 3 |
|
limelon |
⊢ ( ( 𝑧 ∈ V ∧ Lim 𝑧 ) → 𝑧 ∈ On ) |
| 4 |
2 3
|
mpan |
⊢ ( Lim 𝑧 → 𝑧 ∈ On ) |
| 5 |
4
|
pm4.71ri |
⊢ ( Lim 𝑧 ↔ ( 𝑧 ∈ On ∧ Lim 𝑧 ) ) |
| 6 |
5
|
imbi1i |
⊢ ( ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) ↔ ( ( 𝑧 ∈ On ∧ Lim 𝑧 ) → 𝑥 ∈ 𝑧 ) ) |
| 7 |
|
impexp |
⊢ ( ( ( 𝑧 ∈ On ∧ Lim 𝑧 ) → 𝑥 ∈ 𝑧 ) ↔ ( 𝑧 ∈ On → ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) ) ) |
| 8 |
|
con34b |
⊢ ( ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) ↔ ( ¬ 𝑥 ∈ 𝑧 → ¬ Lim 𝑧 ) ) |
| 9 |
|
ibar |
⊢ ( 𝑧 ∈ On → ( ¬ Lim 𝑧 ↔ ( 𝑧 ∈ On ∧ ¬ Lim 𝑧 ) ) ) |
| 10 |
9
|
imbi2d |
⊢ ( 𝑧 ∈ On → ( ( ¬ 𝑥 ∈ 𝑧 → ¬ Lim 𝑧 ) ↔ ( ¬ 𝑥 ∈ 𝑧 → ( 𝑧 ∈ On ∧ ¬ Lim 𝑧 ) ) ) ) |
| 11 |
8 10
|
bitrid |
⊢ ( 𝑧 ∈ On → ( ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) ↔ ( ¬ 𝑥 ∈ 𝑧 → ( 𝑧 ∈ On ∧ ¬ Lim 𝑧 ) ) ) ) |
| 12 |
11
|
pm5.74i |
⊢ ( ( 𝑧 ∈ On → ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) ) ↔ ( 𝑧 ∈ On → ( ¬ 𝑥 ∈ 𝑧 → ( 𝑧 ∈ On ∧ ¬ Lim 𝑧 ) ) ) ) |
| 13 |
6 7 12
|
3bitri |
⊢ ( ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) ↔ ( 𝑧 ∈ On → ( ¬ 𝑥 ∈ 𝑧 → ( 𝑧 ∈ On ∧ ¬ Lim 𝑧 ) ) ) ) |
| 14 |
|
onsssuc |
⊢ ( ( 𝑧 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ suc 𝑥 ) ) |
| 15 |
|
ontri1 |
⊢ ( ( 𝑧 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑧 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝑧 ) ) |
| 16 |
14 15
|
bitr3d |
⊢ ( ( 𝑧 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑧 ∈ suc 𝑥 ↔ ¬ 𝑥 ∈ 𝑧 ) ) |
| 17 |
16
|
ancoms |
⊢ ( ( 𝑥 ∈ On ∧ 𝑧 ∈ On ) → ( 𝑧 ∈ suc 𝑥 ↔ ¬ 𝑥 ∈ 𝑧 ) ) |
| 18 |
|
limeq |
⊢ ( 𝑦 = 𝑧 → ( Lim 𝑦 ↔ Lim 𝑧 ) ) |
| 19 |
18
|
notbid |
⊢ ( 𝑦 = 𝑧 → ( ¬ Lim 𝑦 ↔ ¬ Lim 𝑧 ) ) |
| 20 |
19
|
elrab |
⊢ ( 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ↔ ( 𝑧 ∈ On ∧ ¬ Lim 𝑧 ) ) |
| 21 |
20
|
a1i |
⊢ ( ( 𝑥 ∈ On ∧ 𝑧 ∈ On ) → ( 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ↔ ( 𝑧 ∈ On ∧ ¬ Lim 𝑧 ) ) ) |
| 22 |
17 21
|
imbi12d |
⊢ ( ( 𝑥 ∈ On ∧ 𝑧 ∈ On ) → ( ( 𝑧 ∈ suc 𝑥 → 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ↔ ( ¬ 𝑥 ∈ 𝑧 → ( 𝑧 ∈ On ∧ ¬ Lim 𝑧 ) ) ) ) |
| 23 |
22
|
pm5.74da |
⊢ ( 𝑥 ∈ On → ( ( 𝑧 ∈ On → ( 𝑧 ∈ suc 𝑥 → 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ) ↔ ( 𝑧 ∈ On → ( ¬ 𝑥 ∈ 𝑧 → ( 𝑧 ∈ On ∧ ¬ Lim 𝑧 ) ) ) ) ) |
| 24 |
13 23
|
bitr4id |
⊢ ( 𝑥 ∈ On → ( ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) ↔ ( 𝑧 ∈ On → ( 𝑧 ∈ suc 𝑥 → 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ) ) ) |
| 25 |
|
impexp |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥 ) → 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ↔ ( 𝑧 ∈ On → ( 𝑧 ∈ suc 𝑥 → 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ) ) |
| 26 |
|
simpr |
⊢ ( ( 𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥 ) → 𝑧 ∈ suc 𝑥 ) |
| 27 |
|
onsuc |
⊢ ( 𝑥 ∈ On → suc 𝑥 ∈ On ) |
| 28 |
|
onelon |
⊢ ( ( suc 𝑥 ∈ On ∧ 𝑧 ∈ suc 𝑥 ) → 𝑧 ∈ On ) |
| 29 |
28
|
ex |
⊢ ( suc 𝑥 ∈ On → ( 𝑧 ∈ suc 𝑥 → 𝑧 ∈ On ) ) |
| 30 |
27 29
|
syl |
⊢ ( 𝑥 ∈ On → ( 𝑧 ∈ suc 𝑥 → 𝑧 ∈ On ) ) |
| 31 |
30
|
ancrd |
⊢ ( 𝑥 ∈ On → ( 𝑧 ∈ suc 𝑥 → ( 𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥 ) ) ) |
| 32 |
26 31
|
impbid2 |
⊢ ( 𝑥 ∈ On → ( ( 𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥 ) ↔ 𝑧 ∈ suc 𝑥 ) ) |
| 33 |
32
|
imbi1d |
⊢ ( 𝑥 ∈ On → ( ( ( 𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥 ) → 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ↔ ( 𝑧 ∈ suc 𝑥 → 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ) ) |
| 34 |
25 33
|
bitr3id |
⊢ ( 𝑥 ∈ On → ( ( 𝑧 ∈ On → ( 𝑧 ∈ suc 𝑥 → 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ) ↔ ( 𝑧 ∈ suc 𝑥 → 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ) ) |
| 35 |
24 34
|
bitrd |
⊢ ( 𝑥 ∈ On → ( ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) ↔ ( 𝑧 ∈ suc 𝑥 → 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ) ) |
| 36 |
35
|
albidv |
⊢ ( 𝑥 ∈ On → ( ∀ 𝑧 ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) ↔ ∀ 𝑧 ( 𝑧 ∈ suc 𝑥 → 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ) ) |
| 37 |
|
df-ss |
⊢ ( suc 𝑥 ⊆ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ↔ ∀ 𝑧 ( 𝑧 ∈ suc 𝑥 → 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ) |
| 38 |
36 37
|
bitr4di |
⊢ ( 𝑥 ∈ On → ( ∀ 𝑧 ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) ↔ suc 𝑥 ⊆ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ) |
| 39 |
38
|
rabbiia |
⊢ { 𝑥 ∈ On ∣ ∀ 𝑧 ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) } = { 𝑥 ∈ On ∣ suc 𝑥 ⊆ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } } |
| 40 |
1 39
|
eqtri |
⊢ ω = { 𝑥 ∈ On ∣ suc 𝑥 ⊆ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } } |