Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
⊢ ∅ ∈ V |
2 |
1
|
elintab |
⊢ ( ∅ ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } ↔ ∀ 𝑥 ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) → ∅ ∈ 𝑥 ) ) |
3 |
|
simpl |
⊢ ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) → ∅ ∈ 𝑥 ) |
4 |
2 3
|
mpgbir |
⊢ ∅ ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } |
5 |
|
suceq |
⊢ ( 𝑦 = 𝑧 → suc 𝑦 = suc 𝑧 ) |
6 |
5
|
eleq1d |
⊢ ( 𝑦 = 𝑧 → ( suc 𝑦 ∈ 𝑥 ↔ suc 𝑧 ∈ 𝑥 ) ) |
7 |
6
|
rspccv |
⊢ ( ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 → ( 𝑧 ∈ 𝑥 → suc 𝑧 ∈ 𝑥 ) ) |
8 |
7
|
adantl |
⊢ ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) → ( 𝑧 ∈ 𝑥 → suc 𝑧 ∈ 𝑥 ) ) |
9 |
8
|
a2i |
⊢ ( ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) → ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) → suc 𝑧 ∈ 𝑥 ) ) |
10 |
9
|
alimi |
⊢ ( ∀ 𝑥 ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) → ∀ 𝑥 ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) → suc 𝑧 ∈ 𝑥 ) ) |
11 |
|
vex |
⊢ 𝑧 ∈ V |
12 |
11
|
elintab |
⊢ ( 𝑧 ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } ↔ ∀ 𝑥 ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
13 |
11
|
sucex |
⊢ suc 𝑧 ∈ V |
14 |
13
|
elintab |
⊢ ( suc 𝑧 ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } ↔ ∀ 𝑥 ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) → suc 𝑧 ∈ 𝑥 ) ) |
15 |
10 12 14
|
3imtr4i |
⊢ ( 𝑧 ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } → suc 𝑧 ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } ) |
16 |
15
|
rgenw |
⊢ ∀ 𝑧 ∈ ω ( 𝑧 ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } → suc 𝑧 ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } ) |
17 |
|
peano5 |
⊢ ( ( ∅ ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } ∧ ∀ 𝑧 ∈ ω ( 𝑧 ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } → suc 𝑧 ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } ) ) → ω ⊆ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } ) |
18 |
4 16 17
|
mp2an |
⊢ ω ⊆ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } |
19 |
|
peano1 |
⊢ ∅ ∈ ω |
20 |
|
peano2 |
⊢ ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) |
21 |
20
|
rgen |
⊢ ∀ 𝑦 ∈ ω suc 𝑦 ∈ ω |
22 |
|
omex |
⊢ ω ∈ V |
23 |
|
eleq2 |
⊢ ( 𝑥 = ω → ( ∅ ∈ 𝑥 ↔ ∅ ∈ ω ) ) |
24 |
|
eleq2 |
⊢ ( 𝑥 = ω → ( suc 𝑦 ∈ 𝑥 ↔ suc 𝑦 ∈ ω ) ) |
25 |
24
|
raleqbi1dv |
⊢ ( 𝑥 = ω → ( ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ↔ ∀ 𝑦 ∈ ω suc 𝑦 ∈ ω ) ) |
26 |
23 25
|
anbi12d |
⊢ ( 𝑥 = ω → ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) ↔ ( ∅ ∈ ω ∧ ∀ 𝑦 ∈ ω suc 𝑦 ∈ ω ) ) ) |
27 |
|
eleq2 |
⊢ ( 𝑥 = ω → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ ω ) ) |
28 |
26 27
|
imbi12d |
⊢ ( 𝑥 = ω → ( ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ( ( ∅ ∈ ω ∧ ∀ 𝑦 ∈ ω suc 𝑦 ∈ ω ) → 𝑧 ∈ ω ) ) ) |
29 |
22 28
|
spcv |
⊢ ( ∀ 𝑥 ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) → ( ( ∅ ∈ ω ∧ ∀ 𝑦 ∈ ω suc 𝑦 ∈ ω ) → 𝑧 ∈ ω ) ) |
30 |
12 29
|
sylbi |
⊢ ( 𝑧 ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } → ( ( ∅ ∈ ω ∧ ∀ 𝑦 ∈ ω suc 𝑦 ∈ ω ) → 𝑧 ∈ ω ) ) |
31 |
19 21 30
|
mp2ani |
⊢ ( 𝑧 ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } → 𝑧 ∈ ω ) |
32 |
31
|
ssriv |
⊢ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } ⊆ ω |
33 |
18 32
|
eqssi |
⊢ ω = ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } |