Metamath Proof Explorer


Theorem dfom4

Description: A simplification of df-om assuming the Axiom of Infinity. (Contributed by NM, 30-May-2003)

Ref Expression
Assertion dfom4 ω = { 𝑥 ∣ ∀ 𝑦 ( Lim 𝑦𝑥𝑦 ) }

Proof

Step Hyp Ref Expression
1 elom3 ( 𝑥 ∈ ω ↔ ∀ 𝑦 ( Lim 𝑦𝑥𝑦 ) )
2 1 abbi2i ω = { 𝑥 ∣ ∀ 𝑦 ( Lim 𝑦𝑥𝑦 ) }