| Step |
Hyp |
Ref |
Expression |
| 1 |
|
truni |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∣ ( 𝜑 ∧ Tr 𝑥 ∧ 𝜓 ) } Tr 𝑦 → Tr ∪ { 𝑥 ∣ ( 𝜑 ∧ Tr 𝑥 ∧ 𝜓 ) } ) |
| 2 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 |
| 3 |
|
nfv |
⊢ Ⅎ 𝑥 Tr 𝑦 |
| 4 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜓 |
| 5 |
2 3 4
|
nf3an |
⊢ Ⅎ 𝑥 ( [ 𝑦 / 𝑥 ] 𝜑 ∧ Tr 𝑦 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) |
| 6 |
|
vex |
⊢ 𝑦 ∈ V |
| 7 |
|
sbceq1a |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 8 |
|
treq |
⊢ ( 𝑥 = 𝑦 → ( Tr 𝑥 ↔ Tr 𝑦 ) ) |
| 9 |
|
sbceq1a |
⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 10 |
7 8 9
|
3anbi123d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ Tr 𝑥 ∧ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ Tr 𝑦 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ) |
| 11 |
5 6 10
|
elabf |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝜑 ∧ Tr 𝑥 ∧ 𝜓 ) } ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ Tr 𝑦 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 12 |
11
|
simp2bi |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝜑 ∧ Tr 𝑥 ∧ 𝜓 ) } → Tr 𝑦 ) |
| 13 |
1 12
|
mprg |
⊢ Tr ∪ { 𝑥 ∣ ( 𝜑 ∧ Tr 𝑥 ∧ 𝜓 ) } |