Metamath Proof Explorer


Theorem dfop

Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998) (Avoid depending on this detail.)

Ref Expression
Hypotheses dfop.1 𝐴 ∈ V
dfop.2 𝐵 ∈ V
Assertion dfop 𝐴 , 𝐵 ⟩ = { { 𝐴 } , { 𝐴 , 𝐵 } }

Proof

Step Hyp Ref Expression
1 dfop.1 𝐴 ∈ V
2 dfop.2 𝐵 ∈ V
3 dfopg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ⟨ 𝐴 , 𝐵 ⟩ = { { 𝐴 } , { 𝐴 , 𝐵 } } )
4 1 2 3 mp2an 𝐴 , 𝐵 ⟩ = { { 𝐴 } , { 𝐴 , 𝐵 } }