| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ ( 1st ‘ 𝑧 ) / 𝑥 ] [ ( 2nd ‘ 𝑧 ) / 𝑦 ] 𝜑 |
| 2 |
1
|
19.41 |
⊢ ( ∃ 𝑥 ( ∃ 𝑦 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑧 ) / 𝑥 ] [ ( 2nd ‘ 𝑧 ) / 𝑦 ] 𝜑 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑧 ) / 𝑥 ] [ ( 2nd ‘ 𝑧 ) / 𝑦 ] 𝜑 ) ) |
| 3 |
|
sbcopeq1a |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( [ ( 1st ‘ 𝑧 ) / 𝑥 ] [ ( 2nd ‘ 𝑧 ) / 𝑦 ] 𝜑 ↔ 𝜑 ) ) |
| 4 |
3
|
pm5.32i |
⊢ ( ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑧 ) / 𝑥 ] [ ( 2nd ‘ 𝑧 ) / 𝑦 ] 𝜑 ) ↔ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ) |
| 5 |
4
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑧 ) / 𝑥 ] [ ( 2nd ‘ 𝑧 ) / 𝑦 ] 𝜑 ) ↔ ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ) |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 1st ‘ 𝑧 ) |
| 7 |
|
nfsbc1v |
⊢ Ⅎ 𝑦 [ ( 2nd ‘ 𝑧 ) / 𝑦 ] 𝜑 |
| 8 |
6 7
|
nfsbcw |
⊢ Ⅎ 𝑦 [ ( 1st ‘ 𝑧 ) / 𝑥 ] [ ( 2nd ‘ 𝑧 ) / 𝑦 ] 𝜑 |
| 9 |
8
|
19.41 |
⊢ ( ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑧 ) / 𝑥 ] [ ( 2nd ‘ 𝑧 ) / 𝑦 ] 𝜑 ) ↔ ( ∃ 𝑦 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑧 ) / 𝑥 ] [ ( 2nd ‘ 𝑧 ) / 𝑦 ] 𝜑 ) ) |
| 10 |
5 9
|
bitr3i |
⊢ ( ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ ( ∃ 𝑦 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑧 ) / 𝑥 ] [ ( 2nd ‘ 𝑧 ) / 𝑦 ] 𝜑 ) ) |
| 11 |
10
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ ∃ 𝑥 ( ∃ 𝑦 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑧 ) / 𝑥 ] [ ( 2nd ‘ 𝑧 ) / 𝑦 ] 𝜑 ) ) |
| 12 |
|
elvv |
⊢ ( 𝑧 ∈ ( V × V ) ↔ ∃ 𝑥 ∃ 𝑦 𝑧 = 〈 𝑥 , 𝑦 〉 ) |
| 13 |
12
|
anbi1i |
⊢ ( ( 𝑧 ∈ ( V × V ) ∧ [ ( 1st ‘ 𝑧 ) / 𝑥 ] [ ( 2nd ‘ 𝑧 ) / 𝑦 ] 𝜑 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑧 ) / 𝑥 ] [ ( 2nd ‘ 𝑧 ) / 𝑦 ] 𝜑 ) ) |
| 14 |
2 11 13
|
3bitr4i |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ ( 𝑧 ∈ ( V × V ) ∧ [ ( 1st ‘ 𝑧 ) / 𝑥 ] [ ( 2nd ‘ 𝑧 ) / 𝑦 ] 𝜑 ) ) |
| 15 |
14
|
abbii |
⊢ { 𝑧 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) } = { 𝑧 ∣ ( 𝑧 ∈ ( V × V ) ∧ [ ( 1st ‘ 𝑧 ) / 𝑥 ] [ ( 2nd ‘ 𝑧 ) / 𝑦 ] 𝜑 ) } |
| 16 |
|
df-opab |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } = { 𝑧 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) } |
| 17 |
|
df-rab |
⊢ { 𝑧 ∈ ( V × V ) ∣ [ ( 1st ‘ 𝑧 ) / 𝑥 ] [ ( 2nd ‘ 𝑧 ) / 𝑦 ] 𝜑 } = { 𝑧 ∣ ( 𝑧 ∈ ( V × V ) ∧ [ ( 1st ‘ 𝑧 ) / 𝑥 ] [ ( 2nd ‘ 𝑧 ) / 𝑦 ] 𝜑 ) } |
| 18 |
15 16 17
|
3eqtr4i |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } = { 𝑧 ∈ ( V × V ) ∣ [ ( 1st ‘ 𝑧 ) / 𝑥 ] [ ( 2nd ‘ 𝑧 ) / 𝑦 ] 𝜑 } |