Step |
Hyp |
Ref |
Expression |
1 |
|
dfoprab2 |
⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜑 } = { 〈 𝑤 , 𝑧 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) } |
2 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 |
3 |
2
|
19.41 |
⊢ ( ∃ 𝑥 ( ∃ 𝑦 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ) |
4 |
|
sbcopeq1a |
⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ↔ 𝜑 ) ) |
5 |
4
|
pm5.32i |
⊢ ( ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ↔ ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ) |
6 |
5
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ↔ ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ) |
7 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 1st ‘ 𝑤 ) |
8 |
|
nfsbc1v |
⊢ Ⅎ 𝑦 [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 |
9 |
7 8
|
nfsbcw |
⊢ Ⅎ 𝑦 [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 |
10 |
9
|
19.41 |
⊢ ( ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ↔ ( ∃ 𝑦 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ) |
11 |
6 10
|
bitr3i |
⊢ ( ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ ( ∃ 𝑦 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ) |
12 |
11
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ ∃ 𝑥 ( ∃ 𝑦 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ) |
13 |
|
elvv |
⊢ ( 𝑤 ∈ ( V × V ) ↔ ∃ 𝑥 ∃ 𝑦 𝑤 = 〈 𝑥 , 𝑦 〉 ) |
14 |
13
|
anbi1i |
⊢ ( ( 𝑤 ∈ ( V × V ) ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ) |
15 |
3 12 14
|
3bitr4i |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ ( 𝑤 ∈ ( V × V ) ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ) |
16 |
15
|
opabbii |
⊢ { 〈 𝑤 , 𝑧 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) } = { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ ( V × V ) ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) } |
17 |
1 16
|
eqtri |
⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜑 } = { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ ( V × V ) ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) } |