Step |
Hyp |
Ref |
Expression |
1 |
|
dfoprab4.1 |
⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
xpss |
⊢ ( 𝐴 × 𝐵 ) ⊆ ( V × V ) |
3 |
2
|
sseli |
⊢ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) → 𝑤 ∈ ( V × V ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) → 𝑤 ∈ ( V × V ) ) |
5 |
4
|
pm4.71ri |
⊢ ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) ↔ ( 𝑤 ∈ ( V × V ) ∧ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) ) ) |
6 |
5
|
opabbii |
⊢ { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) } = { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ ( V × V ) ∧ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) ) } |
7 |
|
eleq1 |
⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) ) |
8 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
9 |
7 8
|
bitrdi |
⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
10 |
9 1
|
anbi12d |
⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) ) ) |
11 |
10
|
dfoprab3 |
⊢ { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ ( V × V ) ∧ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) } |
12 |
6 11
|
eqtri |
⊢ { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) } |