| Step | Hyp | Ref | Expression | 
						
							| 1 |  | po0 | ⊢ 𝑅  Po  ∅ | 
						
							| 2 |  | res0 | ⊢ (  I   ↾  ∅ )  =  ∅ | 
						
							| 3 | 2 | ineq2i | ⊢ ( 𝑅  ∩  (  I   ↾  ∅ ) )  =  ( 𝑅  ∩  ∅ ) | 
						
							| 4 |  | in0 | ⊢ ( 𝑅  ∩  ∅ )  =  ∅ | 
						
							| 5 | 3 4 | eqtri | ⊢ ( 𝑅  ∩  (  I   ↾  ∅ ) )  =  ∅ | 
						
							| 6 |  | xp0 | ⊢ ( 𝐴  ×  ∅ )  =  ∅ | 
						
							| 7 | 6 | ineq2i | ⊢ ( 𝑅  ∩  ( 𝐴  ×  ∅ ) )  =  ( 𝑅  ∩  ∅ ) | 
						
							| 8 | 7 4 | eqtri | ⊢ ( 𝑅  ∩  ( 𝐴  ×  ∅ ) )  =  ∅ | 
						
							| 9 | 8 | coeq2i | ⊢ ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  ∅ ) ) )  =  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ∅ ) | 
						
							| 10 |  | co02 | ⊢ ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ∅ )  =  ∅ | 
						
							| 11 | 9 10 | eqtri | ⊢ ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  ∅ ) ) )  =  ∅ | 
						
							| 12 |  | 0ss | ⊢ ∅  ⊆  𝑅 | 
						
							| 13 | 11 12 | eqsstri | ⊢ ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  ∅ ) ) )  ⊆  𝑅 | 
						
							| 14 | 5 13 | pm3.2i | ⊢ ( ( 𝑅  ∩  (  I   ↾  ∅ ) )  =  ∅  ∧  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  ∅ ) ) )  ⊆  𝑅 ) | 
						
							| 15 | 1 14 | 2th | ⊢ ( 𝑅  Po  ∅  ↔  ( ( 𝑅  ∩  (  I   ↾  ∅ ) )  =  ∅  ∧  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  ∅ ) ) )  ⊆  𝑅 ) ) | 
						
							| 16 |  | poeq2 | ⊢ ( 𝐴  =  ∅  →  ( 𝑅  Po  𝐴  ↔  𝑅  Po  ∅ ) ) | 
						
							| 17 |  | reseq2 | ⊢ ( 𝐴  =  ∅  →  (  I   ↾  𝐴 )  =  (  I   ↾  ∅ ) ) | 
						
							| 18 | 17 | ineq2d | ⊢ ( 𝐴  =  ∅  →  ( 𝑅  ∩  (  I   ↾  𝐴 ) )  =  ( 𝑅  ∩  (  I   ↾  ∅ ) ) ) | 
						
							| 19 | 18 | eqeq1d | ⊢ ( 𝐴  =  ∅  →  ( ( 𝑅  ∩  (  I   ↾  𝐴 ) )  =  ∅  ↔  ( 𝑅  ∩  (  I   ↾  ∅ ) )  =  ∅ ) ) | 
						
							| 20 |  | xpeq2 | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  ×  𝐴 )  =  ( 𝐴  ×  ∅ ) ) | 
						
							| 21 | 20 | ineq2d | ⊢ ( 𝐴  =  ∅  →  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  =  ( 𝑅  ∩  ( 𝐴  ×  ∅ ) ) ) | 
						
							| 22 | 21 | coeq2d | ⊢ ( 𝐴  =  ∅  →  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) )  =  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  ∅ ) ) ) ) | 
						
							| 23 | 22 | sseq1d | ⊢ ( 𝐴  =  ∅  →  ( ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) )  ⊆  𝑅  ↔  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  ∅ ) ) )  ⊆  𝑅 ) ) | 
						
							| 24 | 19 23 | anbi12d | ⊢ ( 𝐴  =  ∅  →  ( ( ( 𝑅  ∩  (  I   ↾  𝐴 ) )  =  ∅  ∧  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) )  ⊆  𝑅 )  ↔  ( ( 𝑅  ∩  (  I   ↾  ∅ ) )  =  ∅  ∧  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  ∅ ) ) )  ⊆  𝑅 ) ) ) | 
						
							| 25 | 16 24 | bibi12d | ⊢ ( 𝐴  =  ∅  →  ( ( 𝑅  Po  𝐴  ↔  ( ( 𝑅  ∩  (  I   ↾  𝐴 ) )  =  ∅  ∧  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) )  ⊆  𝑅 ) )  ↔  ( 𝑅  Po  ∅  ↔  ( ( 𝑅  ∩  (  I   ↾  ∅ ) )  =  ∅  ∧  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  ∅ ) ) )  ⊆  𝑅 ) ) ) ) | 
						
							| 26 | 15 25 | mpbiri | ⊢ ( 𝐴  =  ∅  →  ( 𝑅  Po  𝐴  ↔  ( ( 𝑅  ∩  (  I   ↾  𝐴 ) )  =  ∅  ∧  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) )  ⊆  𝑅 ) ) ) | 
						
							| 27 |  | r19.28zv | ⊢ ( 𝐴  ≠  ∅  →  ( ∀ 𝑧  ∈  𝐴 ( ¬  𝑥 𝑅 𝑥  ∧  ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) )  ↔  ( ¬  𝑥 𝑅 𝑥  ∧  ∀ 𝑧  ∈  𝐴 ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) ) ) ) | 
						
							| 28 | 27 | ralbidv | ⊢ ( 𝐴  ≠  ∅  →  ( ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ¬  𝑥 𝑅 𝑥  ∧  ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) )  ↔  ∀ 𝑦  ∈  𝐴 ( ¬  𝑥 𝑅 𝑥  ∧  ∀ 𝑧  ∈  𝐴 ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) ) ) ) | 
						
							| 29 |  | r19.28zv | ⊢ ( 𝐴  ≠  ∅  →  ( ∀ 𝑦  ∈  𝐴 ( ¬  𝑥 𝑅 𝑥  ∧  ∀ 𝑧  ∈  𝐴 ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) )  ↔  ( ¬  𝑥 𝑅 𝑥  ∧  ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) ) ) ) | 
						
							| 30 | 28 29 | bitrd | ⊢ ( 𝐴  ≠  ∅  →  ( ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ¬  𝑥 𝑅 𝑥  ∧  ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) )  ↔  ( ¬  𝑥 𝑅 𝑥  ∧  ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) ) ) ) | 
						
							| 31 | 30 | ralbidv | ⊢ ( 𝐴  ≠  ∅  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ¬  𝑥 𝑅 𝑥  ∧  ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) )  ↔  ∀ 𝑥  ∈  𝐴 ( ¬  𝑥 𝑅 𝑥  ∧  ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) ) ) ) | 
						
							| 32 |  | r19.26 | ⊢ ( ∀ 𝑥  ∈  𝐴 ( ¬  𝑥 𝑅 𝑥  ∧  ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) )  ↔  ( ∀ 𝑥  ∈  𝐴 ¬  𝑥 𝑅 𝑥  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) ) ) | 
						
							| 33 | 31 32 | bitrdi | ⊢ ( 𝐴  ≠  ∅  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ¬  𝑥 𝑅 𝑥  ∧  ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) )  ↔  ( ∀ 𝑥  ∈  𝐴 ¬  𝑥 𝑅 𝑥  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) ) ) ) | 
						
							| 34 |  | df-po | ⊢ ( 𝑅  Po  𝐴  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ¬  𝑥 𝑅 𝑥  ∧  ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) ) ) | 
						
							| 35 |  | disj | ⊢ ( ( 𝑅  ∩  (  I   ↾  𝐴 ) )  =  ∅  ↔  ∀ 𝑤  ∈  𝑅 ¬  𝑤  ∈  (  I   ↾  𝐴 ) ) | 
						
							| 36 |  | df-ral | ⊢ ( ∀ 𝑤  ∈  𝑅 ¬  𝑤  ∈  (  I   ↾  𝐴 )  ↔  ∀ 𝑤 ( 𝑤  ∈  𝑅  →  ¬  𝑤  ∈  (  I   ↾  𝐴 ) ) ) | 
						
							| 37 |  | opex | ⊢ 〈 𝑥 ,  𝑥 〉  ∈  V | 
						
							| 38 |  | eleq1 | ⊢ ( 𝑤  =  〈 𝑥 ,  𝑥 〉  →  ( 𝑤  ∈  𝑅  ↔  〈 𝑥 ,  𝑥 〉  ∈  𝑅 ) ) | 
						
							| 39 |  | df-br | ⊢ ( 𝑥 𝑅 𝑥  ↔  〈 𝑥 ,  𝑥 〉  ∈  𝑅 ) | 
						
							| 40 | 38 39 | bitr4di | ⊢ ( 𝑤  =  〈 𝑥 ,  𝑥 〉  →  ( 𝑤  ∈  𝑅  ↔  𝑥 𝑅 𝑥 ) ) | 
						
							| 41 |  | eleq1 | ⊢ ( 𝑤  =  〈 𝑥 ,  𝑥 〉  →  ( 𝑤  ∈  (  I   ↾  𝐴 )  ↔  〈 𝑥 ,  𝑥 〉  ∈  (  I   ↾  𝐴 ) ) ) | 
						
							| 42 |  | opelidres | ⊢ ( 𝑥  ∈  V  →  ( 〈 𝑥 ,  𝑥 〉  ∈  (  I   ↾  𝐴 )  ↔  𝑥  ∈  𝐴 ) ) | 
						
							| 43 | 42 | elv | ⊢ ( 〈 𝑥 ,  𝑥 〉  ∈  (  I   ↾  𝐴 )  ↔  𝑥  ∈  𝐴 ) | 
						
							| 44 | 41 43 | bitrdi | ⊢ ( 𝑤  =  〈 𝑥 ,  𝑥 〉  →  ( 𝑤  ∈  (  I   ↾  𝐴 )  ↔  𝑥  ∈  𝐴 ) ) | 
						
							| 45 | 44 | notbid | ⊢ ( 𝑤  =  〈 𝑥 ,  𝑥 〉  →  ( ¬  𝑤  ∈  (  I   ↾  𝐴 )  ↔  ¬  𝑥  ∈  𝐴 ) ) | 
						
							| 46 | 40 45 | imbi12d | ⊢ ( 𝑤  =  〈 𝑥 ,  𝑥 〉  →  ( ( 𝑤  ∈  𝑅  →  ¬  𝑤  ∈  (  I   ↾  𝐴 ) )  ↔  ( 𝑥 𝑅 𝑥  →  ¬  𝑥  ∈  𝐴 ) ) ) | 
						
							| 47 | 37 46 | spcv | ⊢ ( ∀ 𝑤 ( 𝑤  ∈  𝑅  →  ¬  𝑤  ∈  (  I   ↾  𝐴 ) )  →  ( 𝑥 𝑅 𝑥  →  ¬  𝑥  ∈  𝐴 ) ) | 
						
							| 48 | 47 | con2d | ⊢ ( ∀ 𝑤 ( 𝑤  ∈  𝑅  →  ¬  𝑤  ∈  (  I   ↾  𝐴 ) )  →  ( 𝑥  ∈  𝐴  →  ¬  𝑥 𝑅 𝑥 ) ) | 
						
							| 49 | 48 | alrimiv | ⊢ ( ∀ 𝑤 ( 𝑤  ∈  𝑅  →  ¬  𝑤  ∈  (  I   ↾  𝐴 ) )  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ¬  𝑥 𝑅 𝑥 ) ) | 
						
							| 50 |  | relres | ⊢ Rel  (  I   ↾  𝐴 ) | 
						
							| 51 |  | elrel | ⊢ ( ( Rel  (  I   ↾  𝐴 )  ∧  𝑤  ∈  (  I   ↾  𝐴 ) )  →  ∃ 𝑦 ∃ 𝑧 𝑤  =  〈 𝑦 ,  𝑧 〉 ) | 
						
							| 52 | 50 51 | mpan | ⊢ ( 𝑤  ∈  (  I   ↾  𝐴 )  →  ∃ 𝑦 ∃ 𝑧 𝑤  =  〈 𝑦 ,  𝑧 〉 ) | 
						
							| 53 | 52 | ancri | ⊢ ( 𝑤  ∈  (  I   ↾  𝐴 )  →  ( ∃ 𝑦 ∃ 𝑧 𝑤  =  〈 𝑦 ,  𝑧 〉  ∧  𝑤  ∈  (  I   ↾  𝐴 ) ) ) | 
						
							| 54 |  | eleq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝐴  ↔  𝑦  ∈  𝐴 ) ) | 
						
							| 55 |  | breq12 | ⊢ ( ( 𝑥  =  𝑦  ∧  𝑥  =  𝑦 )  →  ( 𝑥 𝑅 𝑥  ↔  𝑦 𝑅 𝑦 ) ) | 
						
							| 56 | 55 | anidms | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥 𝑅 𝑥  ↔  𝑦 𝑅 𝑦 ) ) | 
						
							| 57 | 56 | notbid | ⊢ ( 𝑥  =  𝑦  →  ( ¬  𝑥 𝑅 𝑥  ↔  ¬  𝑦 𝑅 𝑦 ) ) | 
						
							| 58 | 54 57 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ∈  𝐴  →  ¬  𝑥 𝑅 𝑥 )  ↔  ( 𝑦  ∈  𝐴  →  ¬  𝑦 𝑅 𝑦 ) ) ) | 
						
							| 59 | 58 | spvv | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ¬  𝑥 𝑅 𝑥 )  →  ( 𝑦  ∈  𝐴  →  ¬  𝑦 𝑅 𝑦 ) ) | 
						
							| 60 |  | breq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑦 𝑅 𝑦  ↔  𝑦 𝑅 𝑧 ) ) | 
						
							| 61 | 60 | notbid | ⊢ ( 𝑦  =  𝑧  →  ( ¬  𝑦 𝑅 𝑦  ↔  ¬  𝑦 𝑅 𝑧 ) ) | 
						
							| 62 | 61 | imbi2d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑦  ∈  𝐴  →  ¬  𝑦 𝑅 𝑦 )  ↔  ( 𝑦  ∈  𝐴  →  ¬  𝑦 𝑅 𝑧 ) ) ) | 
						
							| 63 | 62 | biimpcd | ⊢ ( ( 𝑦  ∈  𝐴  →  ¬  𝑦 𝑅 𝑦 )  →  ( 𝑦  =  𝑧  →  ( 𝑦  ∈  𝐴  →  ¬  𝑦 𝑅 𝑧 ) ) ) | 
						
							| 64 | 63 | impcomd | ⊢ ( ( 𝑦  ∈  𝐴  →  ¬  𝑦 𝑅 𝑦 )  →  ( ( 𝑦  ∈  𝐴  ∧  𝑦  =  𝑧 )  →  ¬  𝑦 𝑅 𝑧 ) ) | 
						
							| 65 | 59 64 | syl | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ¬  𝑥 𝑅 𝑥 )  →  ( ( 𝑦  ∈  𝐴  ∧  𝑦  =  𝑧 )  →  ¬  𝑦 𝑅 𝑧 ) ) | 
						
							| 66 |  | eleq1 | ⊢ ( 𝑤  =  〈 𝑦 ,  𝑧 〉  →  ( 𝑤  ∈  (  I   ↾  𝐴 )  ↔  〈 𝑦 ,  𝑧 〉  ∈  (  I   ↾  𝐴 ) ) ) | 
						
							| 67 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 68 | 67 | brresi | ⊢ ( 𝑦 (  I   ↾  𝐴 ) 𝑧  ↔  ( 𝑦  ∈  𝐴  ∧  𝑦  I  𝑧 ) ) | 
						
							| 69 |  | df-br | ⊢ ( 𝑦 (  I   ↾  𝐴 ) 𝑧  ↔  〈 𝑦 ,  𝑧 〉  ∈  (  I   ↾  𝐴 ) ) | 
						
							| 70 | 67 | ideq | ⊢ ( 𝑦  I  𝑧  ↔  𝑦  =  𝑧 ) | 
						
							| 71 | 70 | anbi2i | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑦  I  𝑧 )  ↔  ( 𝑦  ∈  𝐴  ∧  𝑦  =  𝑧 ) ) | 
						
							| 72 | 68 69 71 | 3bitr3ri | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑦  =  𝑧 )  ↔  〈 𝑦 ,  𝑧 〉  ∈  (  I   ↾  𝐴 ) ) | 
						
							| 73 | 66 72 | bitr4di | ⊢ ( 𝑤  =  〈 𝑦 ,  𝑧 〉  →  ( 𝑤  ∈  (  I   ↾  𝐴 )  ↔  ( 𝑦  ∈  𝐴  ∧  𝑦  =  𝑧 ) ) ) | 
						
							| 74 |  | eleq1 | ⊢ ( 𝑤  =  〈 𝑦 ,  𝑧 〉  →  ( 𝑤  ∈  𝑅  ↔  〈 𝑦 ,  𝑧 〉  ∈  𝑅 ) ) | 
						
							| 75 |  | df-br | ⊢ ( 𝑦 𝑅 𝑧  ↔  〈 𝑦 ,  𝑧 〉  ∈  𝑅 ) | 
						
							| 76 | 74 75 | bitr4di | ⊢ ( 𝑤  =  〈 𝑦 ,  𝑧 〉  →  ( 𝑤  ∈  𝑅  ↔  𝑦 𝑅 𝑧 ) ) | 
						
							| 77 | 76 | notbid | ⊢ ( 𝑤  =  〈 𝑦 ,  𝑧 〉  →  ( ¬  𝑤  ∈  𝑅  ↔  ¬  𝑦 𝑅 𝑧 ) ) | 
						
							| 78 | 73 77 | imbi12d | ⊢ ( 𝑤  =  〈 𝑦 ,  𝑧 〉  →  ( ( 𝑤  ∈  (  I   ↾  𝐴 )  →  ¬  𝑤  ∈  𝑅 )  ↔  ( ( 𝑦  ∈  𝐴  ∧  𝑦  =  𝑧 )  →  ¬  𝑦 𝑅 𝑧 ) ) ) | 
						
							| 79 | 65 78 | syl5ibrcom | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ¬  𝑥 𝑅 𝑥 )  →  ( 𝑤  =  〈 𝑦 ,  𝑧 〉  →  ( 𝑤  ∈  (  I   ↾  𝐴 )  →  ¬  𝑤  ∈  𝑅 ) ) ) | 
						
							| 80 | 79 | exlimdvv | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ¬  𝑥 𝑅 𝑥 )  →  ( ∃ 𝑦 ∃ 𝑧 𝑤  =  〈 𝑦 ,  𝑧 〉  →  ( 𝑤  ∈  (  I   ↾  𝐴 )  →  ¬  𝑤  ∈  𝑅 ) ) ) | 
						
							| 81 | 80 | impd | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ¬  𝑥 𝑅 𝑥 )  →  ( ( ∃ 𝑦 ∃ 𝑧 𝑤  =  〈 𝑦 ,  𝑧 〉  ∧  𝑤  ∈  (  I   ↾  𝐴 ) )  →  ¬  𝑤  ∈  𝑅 ) ) | 
						
							| 82 | 53 81 | syl5 | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ¬  𝑥 𝑅 𝑥 )  →  ( 𝑤  ∈  (  I   ↾  𝐴 )  →  ¬  𝑤  ∈  𝑅 ) ) | 
						
							| 83 | 82 | con2d | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ¬  𝑥 𝑅 𝑥 )  →  ( 𝑤  ∈  𝑅  →  ¬  𝑤  ∈  (  I   ↾  𝐴 ) ) ) | 
						
							| 84 | 83 | alrimiv | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ¬  𝑥 𝑅 𝑥 )  →  ∀ 𝑤 ( 𝑤  ∈  𝑅  →  ¬  𝑤  ∈  (  I   ↾  𝐴 ) ) ) | 
						
							| 85 | 49 84 | impbii | ⊢ ( ∀ 𝑤 ( 𝑤  ∈  𝑅  →  ¬  𝑤  ∈  (  I   ↾  𝐴 ) )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ¬  𝑥 𝑅 𝑥 ) ) | 
						
							| 86 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐴 ¬  𝑥 𝑅 𝑥  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ¬  𝑥 𝑅 𝑥 ) ) | 
						
							| 87 | 85 86 | bitr4i | ⊢ ( ∀ 𝑤 ( 𝑤  ∈  𝑅  →  ¬  𝑤  ∈  (  I   ↾  𝐴 ) )  ↔  ∀ 𝑥  ∈  𝐴 ¬  𝑥 𝑅 𝑥 ) | 
						
							| 88 | 35 36 87 | 3bitri | ⊢ ( ( 𝑅  ∩  (  I   ↾  𝐴 ) )  =  ∅  ↔  ∀ 𝑥  ∈  𝐴 ¬  𝑥 𝑅 𝑥 ) | 
						
							| 89 |  | ralcom | ⊢ ( ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 )  ↔  ∀ 𝑧  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) ) | 
						
							| 90 |  | r19.23v | ⊢ ( ∀ 𝑦  ∈  𝐴 ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 )  ↔  ( ∃ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) ) | 
						
							| 91 | 90 | ralbii | ⊢ ( ∀ 𝑧  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 )  ↔  ∀ 𝑧  ∈  𝐴 ( ∃ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) ) | 
						
							| 92 | 89 91 | bitri | ⊢ ( ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 )  ↔  ∀ 𝑧  ∈  𝐴 ( ∃ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) ) | 
						
							| 93 | 92 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ∃ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) ) | 
						
							| 94 |  | brin | ⊢ ( 𝑥 ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) 𝑦  ↔  ( 𝑥 𝑅 𝑦  ∧  𝑥 ( 𝐴  ×  𝐴 ) 𝑦 ) ) | 
						
							| 95 |  | brin | ⊢ ( 𝑦 ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) 𝑧  ↔  ( 𝑦 𝑅 𝑧  ∧  𝑦 ( 𝐴  ×  𝐴 ) 𝑧 ) ) | 
						
							| 96 | 94 95 | anbi12i | ⊢ ( ( 𝑥 ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) 𝑦  ∧  𝑦 ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 )  ↔  ( ( 𝑥 𝑅 𝑦  ∧  𝑥 ( 𝐴  ×  𝐴 ) 𝑦 )  ∧  ( 𝑦 𝑅 𝑧  ∧  𝑦 ( 𝐴  ×  𝐴 ) 𝑧 ) ) ) | 
						
							| 97 |  | an4 | ⊢ ( ( ( 𝑥 𝑅 𝑦  ∧  𝑥 ( 𝐴  ×  𝐴 ) 𝑦 )  ∧  ( 𝑦 𝑅 𝑧  ∧  𝑦 ( 𝐴  ×  𝐴 ) 𝑧 ) )  ↔  ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  ∧  ( 𝑥 ( 𝐴  ×  𝐴 ) 𝑦  ∧  𝑦 ( 𝐴  ×  𝐴 ) 𝑧 ) ) ) | 
						
							| 98 |  | ancom | ⊢ ( ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  ∧  ( 𝑥 ( 𝐴  ×  𝐴 ) 𝑦  ∧  𝑦 ( 𝐴  ×  𝐴 ) 𝑧 ) )  ↔  ( ( 𝑥 ( 𝐴  ×  𝐴 ) 𝑦  ∧  𝑦 ( 𝐴  ×  𝐴 ) 𝑧 )  ∧  ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 ) ) ) | 
						
							| 99 |  | ancom | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ↔  ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 100 | 99 | anbi1i | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ↔  ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) ) ) | 
						
							| 101 |  | brxp | ⊢ ( 𝑥 ( 𝐴  ×  𝐴 ) 𝑦  ↔  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) ) | 
						
							| 102 |  | brxp | ⊢ ( 𝑦 ( 𝐴  ×  𝐴 ) 𝑧  ↔  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) ) | 
						
							| 103 | 101 102 | anbi12i | ⊢ ( ( 𝑥 ( 𝐴  ×  𝐴 ) 𝑦  ∧  𝑦 ( 𝐴  ×  𝐴 ) 𝑧 )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) ) ) | 
						
							| 104 |  | anandi | ⊢ ( ( 𝑦  ∈  𝐴  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ↔  ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) ) ) | 
						
							| 105 | 100 103 104 | 3bitr4i | ⊢ ( ( 𝑥 ( 𝐴  ×  𝐴 ) 𝑦  ∧  𝑦 ( 𝐴  ×  𝐴 ) 𝑧 )  ↔  ( 𝑦  ∈  𝐴  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) ) ) | 
						
							| 106 | 105 | anbi1i | ⊢ ( ( ( 𝑥 ( 𝐴  ×  𝐴 ) 𝑦  ∧  𝑦 ( 𝐴  ×  𝐴 ) 𝑧 )  ∧  ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 ) )  ↔  ( ( 𝑦  ∈  𝐴  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 ) ) ) | 
						
							| 107 | 97 98 106 | 3bitri | ⊢ ( ( ( 𝑥 𝑅 𝑦  ∧  𝑥 ( 𝐴  ×  𝐴 ) 𝑦 )  ∧  ( 𝑦 𝑅 𝑧  ∧  𝑦 ( 𝐴  ×  𝐴 ) 𝑧 ) )  ↔  ( ( 𝑦  ∈  𝐴  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 ) ) ) | 
						
							| 108 |  | anass | ⊢ ( ( ( 𝑦  ∈  𝐴  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 ) )  ↔  ( 𝑦  ∈  𝐴  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 ) ) ) ) | 
						
							| 109 | 96 107 108 | 3bitri | ⊢ ( ( 𝑥 ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) 𝑦  ∧  𝑦 ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 )  ↔  ( 𝑦  ∈  𝐴  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 ) ) ) ) | 
						
							| 110 | 109 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥 ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) 𝑦  ∧  𝑦 ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 )  ↔  ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 ) ) ) ) | 
						
							| 111 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 112 | 111 67 | brco | ⊢ ( 𝑥 ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) ) 𝑧  ↔  ∃ 𝑦 ( 𝑥 ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) 𝑦  ∧  𝑦 ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 ) ) | 
						
							| 113 |  | df-br | ⊢ ( 𝑥 ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) ) 𝑧  ↔  〈 𝑥 ,  𝑧 〉  ∈  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 114 | 112 113 | bitr3i | ⊢ ( ∃ 𝑦 ( 𝑥 ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) 𝑦  ∧  𝑦 ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 )  ↔  〈 𝑥 ,  𝑧 〉  ∈  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 115 |  | df-rex | ⊢ ( ∃ 𝑦  ∈  𝐴 ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 ) )  ↔  ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 ) ) ) ) | 
						
							| 116 |  | r19.42v | ⊢ ( ∃ 𝑦  ∈  𝐴 ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 ) )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ∃ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 ) ) ) | 
						
							| 117 | 115 116 | bitr3i | ⊢ ( ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 ) ) )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ∃ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 ) ) ) | 
						
							| 118 | 110 114 117 | 3bitr3ri | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ∃ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 ) )  ↔  〈 𝑥 ,  𝑧 〉  ∈  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 119 |  | df-br | ⊢ ( 𝑥 𝑅 𝑧  ↔  〈 𝑥 ,  𝑧 〉  ∈  𝑅 ) | 
						
							| 120 | 118 119 | imbi12i | ⊢ ( ( ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ∃ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 ) )  →  𝑥 𝑅 𝑧 )  ↔  ( 〈 𝑥 ,  𝑧 〉  ∈  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) )  →  〈 𝑥 ,  𝑧 〉  ∈  𝑅 ) ) | 
						
							| 121 | 120 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑧 ( ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ∃ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 ) )  →  𝑥 𝑅 𝑧 )  ↔  ∀ 𝑥 ∀ 𝑧 ( 〈 𝑥 ,  𝑧 〉  ∈  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) )  →  〈 𝑥 ,  𝑧 〉  ∈  𝑅 ) ) | 
						
							| 122 |  | r2al | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ∃ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 )  ↔  ∀ 𝑥 ∀ 𝑧 ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  →  ( ∃ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) ) ) | 
						
							| 123 |  | impexp | ⊢ ( ( ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ∃ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 ) )  →  𝑥 𝑅 𝑧 )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  →  ( ∃ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) ) ) | 
						
							| 124 | 123 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑧 ( ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ∃ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 ) )  →  𝑥 𝑅 𝑧 )  ↔  ∀ 𝑥 ∀ 𝑧 ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  →  ( ∃ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) ) ) | 
						
							| 125 | 122 124 | bitr4i | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ∃ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 )  ↔  ∀ 𝑥 ∀ 𝑧 ( ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ∃ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 ) )  →  𝑥 𝑅 𝑧 ) ) | 
						
							| 126 |  | relco | ⊢ Rel  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) ) | 
						
							| 127 |  | ssrel | ⊢ ( Rel  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) )  →  ( ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) )  ⊆  𝑅  ↔  ∀ 𝑥 ∀ 𝑧 ( 〈 𝑥 ,  𝑧 〉  ∈  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) )  →  〈 𝑥 ,  𝑧 〉  ∈  𝑅 ) ) ) | 
						
							| 128 | 126 127 | ax-mp | ⊢ ( ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) )  ⊆  𝑅  ↔  ∀ 𝑥 ∀ 𝑧 ( 〈 𝑥 ,  𝑧 〉  ∈  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) )  →  〈 𝑥 ,  𝑧 〉  ∈  𝑅 ) ) | 
						
							| 129 | 121 125 128 | 3bitr4i | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ∃ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 )  ↔  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) )  ⊆  𝑅 ) | 
						
							| 130 | 93 129 | bitr2i | ⊢ ( ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) )  ⊆  𝑅  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) ) | 
						
							| 131 | 88 130 | anbi12i | ⊢ ( ( ( 𝑅  ∩  (  I   ↾  𝐴 ) )  =  ∅  ∧  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) )  ⊆  𝑅 )  ↔  ( ∀ 𝑥  ∈  𝐴 ¬  𝑥 𝑅 𝑥  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) ) ) | 
						
							| 132 | 33 34 131 | 3bitr4g | ⊢ ( 𝐴  ≠  ∅  →  ( 𝑅  Po  𝐴  ↔  ( ( 𝑅  ∩  (  I   ↾  𝐴 ) )  =  ∅  ∧  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) )  ⊆  𝑅 ) ) ) | 
						
							| 133 | 26 132 | pm2.61ine | ⊢ ( 𝑅  Po  𝐴  ↔  ( ( 𝑅  ∩  (  I   ↾  𝐴 ) )  =  ∅  ∧  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∘  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) )  ⊆  𝑅 ) ) |