Description: Alternate definition of a pair. Definition 5.1 of TakeutiZaring p. 15. (Contributed by NM, 24-Apr-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | dfpr2 | ⊢ { 𝐴 , 𝐵 } = { 𝑥 ∣ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr | ⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) | |
2 | elun | ⊢ ( 𝑥 ∈ ( { 𝐴 } ∪ { 𝐵 } ) ↔ ( 𝑥 ∈ { 𝐴 } ∨ 𝑥 ∈ { 𝐵 } ) ) | |
3 | velsn | ⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) | |
4 | velsn | ⊢ ( 𝑥 ∈ { 𝐵 } ↔ 𝑥 = 𝐵 ) | |
5 | 3 4 | orbi12i | ⊢ ( ( 𝑥 ∈ { 𝐴 } ∨ 𝑥 ∈ { 𝐵 } ) ↔ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) |
6 | 2 5 | bitri | ⊢ ( 𝑥 ∈ ( { 𝐴 } ∪ { 𝐵 } ) ↔ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) |
7 | 6 | abbi2i | ⊢ ( { 𝐴 } ∪ { 𝐵 } ) = { 𝑥 ∣ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) } |
8 | 1 7 | eqtri | ⊢ { 𝐴 , 𝐵 } = { 𝑥 ∣ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) } |